论文标题

部分可观测时空混沌系统的无模型预测

Closed SPARSE -- a predictive particle cloud tracer

论文作者

Domínguez-Vázquez, Daniel, Klose, Bjoern F., Jacobs, Gustaaf B.

论文摘要

提出了封闭和预测的粒子云示踪法。示踪剂建立在[戴维斯等人,皇家学会A,473(2199),2017年,第473页(2017年)中引入的亚网格粒子平均应力等效(稀疏)配方。后来,它通过使用云对基于网格的基于网格的速度场解决方案的高斯分布的高斯分布,扩展到[Taverniers等人,计算物理学杂志,390,2019]中的云(CIC)公式。稀疏通过将阻力系数和努塞尔特数量校正因子的泰勒串联扩展结合在粒子云的平均相对速度的平均相对速度中,将粒子方程分解的平均相对速度的平均相对速度结合在一起,从而将云的轨迹纠正为二阶。在这里,我们通过使用截短的泰勒串联速度表示并将其与平均值结合来确定平均云位置附近的速度场,通过确定平均云位置附近的速度场来关闭未缝合的稀疏公式。由此产生的示踪剂是预测的。它可以通过一个点来追踪颗粒云,从而降低了精确追踪粒子组的自由度。我们证明了该方法在几个,二维和三维测试用例中的准确性和收敛性。

A closed and predictive particle cloud tracer method is presented. The tracer builds upon the Subgrid Particle Averaged Reynolds Stress Equivalent (SPARSE) formulation first introduced in [Davis et al., Proceedings of the Royal Society A, 473(2199), 2017] for the tracing of particle clouds. It was later extended to a Cloud-In-Cell (CIC) formulation in [Taverniers et al., Journal of Computational Physics, 390, 2019] using a Gaussian distribution of a cloud's influence over a mesh-based, velocity field solution. SPARSE corrects the cloud's trace to second order by combining a Taylor series expansion of the drag coefficient and Nusselt number correction factors around the mean relative velocity of a cloud of particles with a Reynolds decomposition of the particle equations to obtain a governing system for the first two statistical moments of the cloud's position, velocity and temperature. Here, we close the thus far unclosed SPARSE formulation by determining the velocity field in the vicinity of the mean cloud location using a truncated Taylor series velocity representation and by combining that with averaging. The resulting tracer is predictive. It enables the tracing of a cloud of particles through a single point and so reduces the required degrees of freedom in the accurate tracing of groups of particles. We demonstrate the accuracy and convergence of the method in several one-, two- and three-dimensional test cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源