论文标题

通过因果机学习的规定维护

Prescriptive maintenance with causal machine learning

论文作者

Vanderschueren, Toon, Boute, Robert, Verdonck, Tim, Baesens, Bart, Verbeke, Wouter

论文摘要

机器维护是一个具有挑战性的操作问题,其目标是计划足够的预防性维护,以避免机器故障和大修。维护通常在现实中是不完美的,并且不会使资产与新资产一样好。尽管文献中已经提出了各种不完美的维护政策,但这些效果是(1)确定性或由已知的概率分布控制,以及(2)与机器无关的,这些策略依赖于对维护对机器状况的影响的强有力的假设。这项工作建议使用现有的因果推断方法,从相似机器上的观察数据中学习维护对机器特征的有条件特征来放松这两个假设。通过预测维护效果,我们可以估计不同级别维护水平的大修和故障的数量,并因此优化了预防性维护频率,以最大程度地减少估计总成本。我们使用工业合作伙伴的4,000多个维护合同的现实生活数据验证了我们提出的方法。经验结果表明,我们的新颖的因果方法准确地预测了维护效果,并产生了个性化的维护时间表,这些维护时间表比监督或非个人化方法更准确和更具成本效益。

Machine maintenance is a challenging operational problem, where the goal is to plan sufficient preventive maintenance to avoid machine failures and overhauls. Maintenance is often imperfect in reality and does not make the asset as good as new. Although a variety of imperfect maintenance policies have been proposed in the literature, these rely on strong assumptions regarding the effect of maintenance on the machine's condition, assuming the effect is (1) deterministic or governed by a known probability distribution, and (2) machine-independent. This work proposes to relax both assumptions by learning the effect of maintenance conditional on a machine's characteristics from observational data on similar machines using existing methodologies for causal inference. By predicting the maintenance effect, we can estimate the number of overhauls and failures for different levels of maintenance and, consequently, optimize the preventive maintenance frequency to minimize the total estimated cost. We validate our proposed approach using real-life data on more than 4,000 maintenance contracts from an industrial partner. Empirical results show that our novel, causal approach accurately predicts the maintenance effect and results in individualized maintenance schedules that are more accurate and cost-effective than supervised or non-individualized approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源