论文标题

石墨烯中通过自我卷起的膜平台大于5%的压缩应变

Greater than 5 Percent Compressive Strain in Graphene via the Self Rolled up Membrane Platform

论文作者

Froeter, Paul, Moseni, Parsian, Khandelwal, Apratim, Li, Xiuling

论文摘要

石墨烯是一种原子上薄的金属膜,能够维持可逆应变,并提供了通过应变控制其光电特性的诱人前景。 Grusiones出色的机械柔韧性和拉伸强度为应变工程提供了很大的空间。在这里,我们使用自动上的膜平台来应变工程,并将石墨烯与应力的介电薄膜整合。从底物释放后,石墨烯与压力膜一起滚动或向下滚动或向下滚动,并且滚动膜堆栈的曲率可实现石墨烯单层的应变调整。拉曼光谱法用于通过量化双重脱位e2g e2g光学模式中的G峰的红移和分裂来表征卷曲石墨烯中的单轴应变。使用大约2微米的SRUM直径实现了约5%的压缩应变。通过降低SRUM结构的直径,可以达到更高的应变水平。 SRUM方法也可以很容易地应用于在可以使用常规方法达到的水平的其他材料中诱导应变。

Graphene is an atomically thin metallic membrane capable of sustaining reversible strain and offers a tempting prospect of controlling its optoelectronic properties via strain. Graphenes exceptional mechanical flexibility and tensile strength provide a lot of room for strain engineering. Here we use the self-rolled-up membrane platform for strain engineering and integration of graphene with stressed dielectric thin films. Graphene rolls up or down together with the stressed film upon releasing from the substrate and the curvature of the rolled-up film stack enables the strain tuning of the graphene monolayer. Raman spectroscopy was used to characterize the uniaxial strain in rolled up graphene by quantifying the red shift and splitting of the G peak in the doubly degenerate E2g optical mode. Approximately 5 percent compressive strain is realized using a SRuM diameter of roughly 2 microns. By reducing the diameter of the SRuM structure, even higher strain level can be reached. The SRuM approach can also be readily applied to induce strain in other materials beyond the level that can be achieved using conventional approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源