论文标题
五个维度的对称性
Yangian Symmetry in Five Dimensions
论文作者
论文摘要
广告中的量子重力$ _7 \ times $ s $^4 $对6D超符合场理论是双重的,称为6D $(2,0)$理论,这对于描述非常具有挑战性,因为它缺乏传统的Lagrangian描述。另一方面,6d $(2,0)$理论的某些无效降低引起了5D Lagrangian理论,并带有$ SU(1,3)$ spacetime对称性,$ so(5)$ r-Mysmemetry和24个增压。这似乎与称为ABJM理论的3D超符号Chern-Simons理论的超符号群密切相关,如果一个人交换了形式和R-Mysmemetry的作用,则认为该理论被认为是在平面极限中的整合。在本说明中,我们使用6D supertwistors构建了5D超符号组的表示形式,并表明它承认了一个无限的尺寸延伸,称为扬吉对称性,该延伸范围称为扬吉对称性,这使这些5D理论在平面极限中完全可以解决。
Quantum gravity in AdS$_7 \times$S$^4$ is dual to a 6d superconformal field theory, known as the 6d $(2,0)$ theory, which is very challenging to describe because it lacks a conventional Lagrangian description. On the other hand, certain null reductions of the 6d $(2,0)$ theory give rise to 5d Lagrangian theories with $SU(1,3)$ spacetime symmetry, $SO(5)$ R-symmetry, and 24 supercharges. This appears to be closely related to the superconformal group of a 3d superconformal Chern-Simons theory known as the ABJM theory, which is believed to be integrable in the planar limit, if one exchanges the role of conformal and R-symmetry. In this note, we construct a representation of the 5d superconformal group using 6d supertwistors and show that it admits an infinite dimensional extension known as Yangian symmetry, which opens up the possiblity that these 5d theories are exactly solvable in the planar limit.