论文标题
红外等离子体通过双曲线金属传播
Infrared Plasmons Propagate through a Hyperbolic Nodal Metal
论文作者
论文摘要
金属是红外和光学波长的规范等离子体介质,可以在纳米尺度上引导和操纵光。高度各向异性晶体提供了一种特殊形式的光学波导形式,该晶体揭示了沿正交方向的介电函数的相反迹象。这些培养基被归类为双曲线,包括晶体绝缘子,半导体和人工超材料。预计分层各向异性金属也可以支持双曲线波。然而,这种行为仍然难以捉摸,这主要是因为束缚损失阻碍了红外模式的传播。在这里,我们报告了在典型的分层节点线半度ZRSISE中观察到繁殖双曲波的观察。观察到的波导起源于近红外光和节点线等离子之间的极化杂交。独特的节点电子结构同时抑制带间损耗并增强等离子响应,最终使红外模式通过大部分晶体传播。
Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nano-scale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. Yet this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.