论文标题

MATHBB {z}^{d} $行动的多项式ergodic平均值

Polynomial ergodic averages of measure-preserving systems acted by $\mathbb{Z}^{d}$

论文作者

Xiao, Rongzhong

论文摘要

在本文中,我们将由$ \ mathbb {z}^{d} $作用的一般度量推迟系统的多项式Ergodic平均值降低,以$ \ MATHBB {z}^{d} $具有零熵。作为一个应用程序,我们可以以$ \ Mathbb {z}^{d} $为$ k $系统的多项式Ergodic平均值构建点的收敛。

In this paper, we reduce pointwise convergence of polynomial ergodic averages of general measure-preserving system acted by $\mathbb{Z}^{d}$ to the case of measure-preserving system acted by $\mathbb{Z}^{d}$ with zero entropy. As an application, we can build pointwise convergence of polynomial ergodic averages for $K$-system acted by $\mathbb{Z}^{d}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源