论文标题

通过清晰度最小化的广义联盟学习

Generalized Federated Learning via Sharpness Aware Minimization

论文作者

Qu, Zhe, Li, Xingyu, Duan, Rui, Liu, Yao, Tang, Bo, Lu, Zhuo

论文摘要

联合学习(FL)是与一组客户一起执行隐私,分布式学习的有前途的框架。但是,客户之间的数据分布通常表现出非IID,即分配变化,这使得有效优化变得困难。为了解决这个问题,许多FL算法致力于通过提高全球模型的性能来减轻客户跨客户的数据异质性的影响。但是,几乎所有算法都利用经验风险最小化(ERM)为本地优化器,这很容易使全球模型落入尖锐的山谷,并增加了当地客户的大部分偏差。因此,在本文中,我们重点介绍了FL中的分销转移问题的解决方案,重点是本地学习通用性。为此,我们提出了一种一般有效的算法,\ texttt {fedSam},基于清晰度的最小化(SAM)局部优化器,并开发了一种动量FL算法来桥接本地和全球模型,\ texttt {mofedsam}。从理论上讲,我们显示了这两种算法的收敛分析,并演示了\ texttt {fedSam}的概括结合。从经验上讲,我们提出的算法基本上优于现有的FL研究,并显着降低了学习偏差。

Federated Learning (FL) is a promising framework for performing privacy-preserving, distributed learning with a set of clients. However, the data distribution among clients often exhibits non-IID, i.e., distribution shift, which makes efficient optimization difficult. To tackle this problem, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by increasing the performance of the global model. However, almost all algorithms leverage Empirical Risk Minimization (ERM) to be the local optimizer, which is easy to make the global model fall into a sharp valley and increase a large deviation of parts of local clients. Therefore, in this paper, we revisit the solutions to the distribution shift problem in FL with a focus on local learning generality. To this end, we propose a general, effective algorithm, \texttt{FedSAM}, based on Sharpness Aware Minimization (SAM) local optimizer, and develop a momentum FL algorithm to bridge local and global models, \texttt{MoFedSAM}. Theoretically, we show the convergence analysis of these two algorithms and demonstrate the generalization bound of \texttt{FedSAM}. Empirically, our proposed algorithms substantially outperform existing FL studies and significantly decrease the learning deviation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源