论文标题

使用时间图变压器的多行为顺序推荐

Multi-Behavior Sequential Recommendation with Temporal Graph Transformer

论文作者

Xia, Lianghao, Huang, Chao, Xu, Yong, Pei, Jian

论文摘要

在许多在线应用程序中,对用户进行连续项目互动的时间不断发展的偏好进行建模。因此,已经开发了顺序推荐系统,以从历史互动中学习用于建议项目的历史互动中的动态用户兴趣。但是,在大多数现有的顺序推荐系统中,相互作用模式编码函数都集中在单一类型的用户项目交互上。在许多现实生活中的在线平台中,用户项目的交互行为通常是多型(例如,单击,添加到最佳的,购买,购买)具有复杂的跨型行为相互依赖性。从用户和项目的信息代表中学习的基于其多类交互数据的信息,对于准确表征时间不断发展的用户偏好非常重要。在这项工作中,我们以多行为互动模式的意识来解决动态的用户项目学习学习。为此,我们通过探索不同类型的行为跨不同类型的行为的不断发展的相关性,提出了一个新的时间图形变压器(TGT)推荐框架,以共同捕获动态的短期和远程用户交互式模式。新的TGT方法赋予了顺序推荐体系结构,以提取特定于类型的行为关系上下文和隐式行为依赖性的专用知识。现实世界数据集上的实验表明,我们的方法TGT始终优于各种最新建议方法。我们的模型实现代码可在https://github.com/akaxlh/tgt上找到。

Modeling time-evolving preferences of users with their sequential item interactions, has attracted increasing attention in many online applications. Hence, sequential recommender systems have been developed to learn the dynamic user interests from the historical interactions for suggesting items. However, the interaction pattern encoding functions in most existing sequential recommender systems have focused on single type of user-item interactions. In many real-life online platforms, user-item interactive behaviors are often multi-typed (e.g., click, add-to-favorite, purchase) with complex cross-type behavior inter-dependencies. Learning from informative representations of users and items based on their multi-typed interaction data, is of great importance to accurately characterize the time-evolving user preference. In this work, we tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns. Towards this end, we propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns, by exploring the evolving correlations across different types of behaviors. The new TGT method endows the sequential recommendation architecture to distill dedicated knowledge for type-specific behavior relational context and the implicit behavior dependencies. Experiments on the real-world datasets indicate that our method TGT consistently outperforms various state-of-the-art recommendation methods. Our model implementation codes are available at https://github.com/akaxlh/TGT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源