论文标题
零好的sciml:科学软件与深度学习的非突破性集成
Zeroth-Order SciML: Non-intrusive Integration of Scientific Software with Deep Learning
论文作者
论文摘要
使用深度学习(DL)加速和/或改善科学工作流可以产生原本不可能的发现。不幸的是,由于数据要求较大,DL模型在复杂的科学领域的成功率有限。在这项工作中,我们建议通过将丰富的科学知识来源(SK)与DL培训过程相结合来克服这个问题。现有的知识集成方法仅限于使用可不同的知识源以与一阶DL培训范式兼容。相比之下,我们提出的方法将知识源视为黑框,从而使几乎任何知识来源都整合。为了实现SKS耦合DL的端到端培训,我们建议使用基于零阶阶阶阶(Zoo)的无梯度训练方案,该方案无侵入性,即不需要对SKS进行任何更改。我们评估了动物园培训计划在两个现实世界的材料科学应用上的性能。我们表明,提议的方案能够有效地将科学知识与DL培训相结合,并能够超过数据限制的科学应用的纯粹数据驱动模型。我们还讨论了所提出的方法的一些局限性,并提及可能未来的方向。
Using deep learning (DL) to accelerate and/or improve scientific workflows can yield discoveries that are otherwise impossible. Unfortunately, DL models have yielded limited success in complex scientific domains due to large data requirements. In this work, we propose to overcome this issue by integrating the abundance of scientific knowledge sources (SKS) with the DL training process. Existing knowledge integration approaches are limited to using differentiable knowledge source to be compatible with first-order DL training paradigm. In contrast, our proposed approach treats knowledge source as a black-box in turn allowing to integrate virtually any knowledge source. To enable an end-to-end training of SKS-coupled-DL, we propose to use zeroth-order optimization (ZOO) based gradient-free training schemes, which is non-intrusive, i.e., does not require making any changes to the SKS. We evaluate the performance of our ZOO training scheme on two real-world material science applications. We show that proposed scheme is able to effectively integrate scientific knowledge with DL training and is able to outperform purely data-driven model for data-limited scientific applications. We also discuss some limitations of the proposed method and mention potentially worthwhile future directions.