论文标题

有效的基于实体的强化学习

Efficient entity-based reinforcement learning

论文作者

Jankovics, Vince, Ortiz, Michael Garcia, Alonso, Eduardo

论文摘要

最近的深入强化学习(DRL)成功依赖于从固定大小的观察投入(例如图像,状态变量)中的端到端学习。但是,决策中许多最具挑战性和有趣的问题涉及最好被描述为一组实体的观察或中间表示:要么基于图像的方法会错过观测值的小但重要的细节(例如,在雷达上置于雷达上,卫星图像上的工具,在卫星图像等上等),感应的对象的数量不能固定(例如,机器人的手术),或者是固定的(例如,机器人的手术),而有意义的是一个含义的含义。或物流)。这种类型的结构化表示与当前的DRL体系结构不直接兼容,但是,机器学习技术直接针对结构化信息,有可能解决此问题。我们建议将设定表示的最新进展与插槽注意力和图形神经网络相结合,以处理结构化数据,从而扩大了DRL算法的应用范围。这种方法允许以高效且可扩展的方式解决基于实体的问题。我们表明,它可以显着改善训练时间和鲁棒性,并在Atari学习环境和简单的操场上的多个环境上展示其处理结构化和纯粹的视觉域的潜力。

Recent deep reinforcement learning (DRL) successes rely on end-to-end learning from fixed-size observational inputs (e.g. image, state-variables). However, many challenging and interesting problems in decision making involve observations or intermediary representations which are best described as a set of entities: either the image-based approach would miss small but important details in the observations (e.g. ojects on a radar, vehicles on satellite images, etc.), the number of sensed objects is not fixed (e.g. robotic manipulation), or the problem simply cannot be represented in a meaningful way as an image (e.g. power grid control, or logistics). This type of structured representations is not directly compatible with current DRL architectures, however, there has been an increase in machine learning techniques directly targeting structured information, potentially addressing this issue. We propose to combine recent advances in set representations with slot attention and graph neural networks to process structured data, broadening the range of applications of DRL algorithms. This approach allows to address entity-based problems in an efficient and scalable way. We show that it can improve training time and robustness significantly, and demonstrate their potential to handle structured as well as purely visual domains, on multiple environments from the Atari Learning Environment and Simple Playgrounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源