论文标题

Spikili:用于自动驾驶的基于激光雷达的实时对象检测的尖峰模拟

SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection for Autonomous Driving

论文作者

Mohapatra, Sambit, Mesquida, Thomas, Hodaei, Mona, Yogamani, Senthil, Gotzig, Heinrich, Mader, Patrick

论文摘要

尖峰神经网络是一种新的和新的神经网络设计方法,有望在功率效率,计算效率和处理延迟方面进行巨大提高。他们通过使用基于异步尖峰的数据流,基于事件的信号产生,处理和修改神经元模型以密切相似的生物神经元的方法来做到这一点。尽管一些初始作品显示出对常见深度学习任务的适用性的重要初始证据,但它们在复杂的现实世界任务中的应用相对较低。在这项工作中,我们首先说明了神经网络对复杂的深度学习任务的适用性,即基于激光雷达的3D对象检测自动驾驶。其次,我们逐步演示使用预训练的卷积神经网络模拟尖峰行为。我们在模拟中对尖峰神经网络的基本方面进行密切建模,并在GPU上实现等效的运行时间和准确性。当模型在神经形态硬件上实现时,我们希望能够显着提高功率效率。

Spiking Neural Networks are a recent and new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency. They do so by using asynchronous spike-based data flow, event-based signal generation, processing, and modifying the neuron model to resemble biological neurons closely. While some initial works have shown significant initial evidence of applicability to common deep learning tasks, their applications in complex real-world tasks has been relatively low. In this work, we first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving. Secondly, we make a step-by-step demonstration of simulating spiking behavior using a pre-trained convolutional neural network. We closely model essential aspects of spiking neural networks in simulation and achieve equivalent run-time and accuracy on a GPU. When the model is realized on a neuromorphic hardware, we expect to have significantly improved power efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源