论文标题
基于严格反馈系统动态高增益缩放控制器中控制器参数的在线计算的矩阵铅笔计算
Matrix Pencil Based On-Line Computation of Controller Parameters in Dynamic High-Gain Scaling Controllers for Strict-Feedback Systems
论文作者
论文摘要
我们为一类不确定的非线性严格反馈式系统设计了一种新的基于矩阵铅笔的方法,用于设计状态反馈和输出反馈稳定控制器。虽然动态控制器结构基于基于双动态高增强缩放的方法,但我们在一般基质铅笔结构中施放了设计过程,与先前的结果不同,在Lyapunov不等式中使用的保守术语范围。动态控制器中的设计自由是根据与矩阵铅笔相关的广义特征值来提取的,该铅笔是为了捕获Lyapunov分析中界限的详细结构(系统动力学及其状态依赖性中不确定项的位置)。所提出的方法可以有效地计算非保守界限,并具有降低的代数复杂性,并增强了基于双动态高增量缩放的控制设计的应用。所提出的方法是在状态反馈和输出反馈案例下开发的,该方法的疗效是通过对数值示例的仿真研究来证明的。
We propose a new matrix pencil based approach for design of state-feedback and output-feedback stabilizing controllers for a general class of uncertain nonlinear strict-feedback-like systems. While the dynamic controller structure is based on the dual dynamic high-gain scaling based approach, we cast the design procedure within a general matrix pencil structure unlike prior results that utilized conservative algebraic bounds of terms arising in Lyapunov inequalities. The design freedoms in the dynamic controller are extracted in terms of generalized eigenvalues associated with matrix pencils formulated to capture the detailed structures (locations of uncertain terms in the system dynamics and their state dependences) of bounds in the Lyapunov analysis. The proposed approach enables efficient computation of non-conservative bounds with reduced algebraic complexity and enhances feasibility of application of the dual dynamic high-gain scaling based control designs. The proposed approach is developed under both the state-feedback and output-feedback cases and the efficacy of the approach is demonstrated through simulation studies on a numerical example.