论文标题

尖锐的$ l^1 $ - log-heston sde的approximation by euler-type方法

Sharp $L^1$-Approximation of the log-Heston SDE by Euler-type methods

论文作者

Mickel, Annalena, Neuenkirch, Andreas

论文摘要

我们通过Euler-Type方法在等距的时间点研究log-heston SDE的$ l^1 $ apptroximation。如果基本CIR流程的feller索引$ν$满足$ν> 1 $,我们将建立$1/2-ε$ for $ε> 0 $ $ 1/2-ε$。因此,我们恢复具有全球Lipschitz系数的SDE的EULER方案的标准收敛顺序。此外,我们讨论了$ν\ leq 1 $,并通过几个数字示例说明了我们的发现。

We study the $L^1$-approximation of the log-Heston SDE at equidistant time points by Euler-type methods. We establish the convergence order $ 1/2-ε$ for $ε>0$ arbitrarily small, if the Feller index $ν$ of the underlying CIR process satisfies $ν> 1$. Thus, we recover the standard convergence order of the Euler scheme for SDEs with globally Lipschitz coefficients. Moreover, we discuss the case $ν\leq 1$ and illustrate our findings by several numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源