论文标题
Lipschitz的规律性几乎是由$ p $ laplace操作员驱动的一阶段问题的最小化器
Lipschitz regularity of almost minimizers in one-phase problems driven by the $p$-Laplace operator
论文作者
论文摘要
我们证明,给定的〜$ p> \ max \ left \ {\ frac {2n} {n+2},1 \ right \} $,非单调的非负号的非线性最小化器,非线性免费边界功能 $ j_p(u,ω):= \int_Ω\ big(| \ nabla u(x)|^p+χ_ {\ {u> 0 \}}}}(x)\ big)\ big)\,dx $$,dx $$是LipsChitz的连续。
We prove that, given~$p>\max\left\{\frac{2n}{n+2},1\right\}$, the nonnegative almost minimizers of the nonlinear free boundary functional $$ J_p(u,Ω):=\int_Ω\Big( |\nabla u(x)|^p+χ_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous.