论文标题
塞尔伯格的密度不规则的筛子
Selberg's sieve of irregular density
论文作者
论文摘要
我们研究了塞尔伯格筛子的某些方面,特别是在用相当薄的素数筛选时。我们为特别适合这种设置的下边界筛子得出了新的结果,并特别应用它们,以在存在异常零的情况下,在算术进展中为Linnik定理提供了新的筛子式证明。
We study certain aspects of the Selberg sieve, in particular when sifting by rather thin sets of primes. We derive new results for the lower bound sieve suited especially for this setup and we apply them in particular to give a new sieve-propelled proof of Linnik's theorem on the least prime in an arithmetic progression in the case of the presence of exceptional zeros.