论文标题

在动态环境中的多机器人协同定位

Multi-Robot Synergistic Localization in Dynamic Environments

论文作者

Latif, Ehsan, Parasuraman, Ramviyas

论文摘要

移动机器人的精确位置信息对于导航和任务处理至关重要,特别是对于多机器人系统(MRS),可以从该领域进行协作和收集有价值的数据。但是,在无法访问GPS信号(例如在环境控制,室内或地下环境中)的机器人发现很难单独使用其传感器找到。结果,机器人共享其本地信息以改善其本地化估计,使整个MRS团队受益。已经尝试使用无线电信号强度指标(RSSI)作为计算轴承信息的来源进行了几次尝试建模基于多机器人的定位。我们还利用了通过系统中多个机器人通信生成的无线网络,并旨在在动态环境中具有很高准确性和效率的定位代理,以共享信息融合以完善本地化估计。该估计器结构减少了一个测量相关性的来源,同时适当地合并了其他相关性。本文提出了一个分散的多机器人协同定位系统(MRSL),以实现密集和动态的环境。每当从邻居那里收到新信息时,机器人会更新其位置估计。当系统感觉到该地区其他机器人的存在时,它会交换位置估计并将接收到的数据合并以提高其本地化精度。我们的方法使用基于贝叶斯规则的集成,该集成已证明在计算上有效且适用于异步机器人通信。我们已经使用大量机器人进行了广泛的模拟实验,以分析算法。 MRSL用RSSI的本地化准确性优于文献中的其他算法,这对未来发展有很大的希望。

A mobile robot's precise location information is critical for navigation and task processing, especially for a multi-robot system (MRS) to collaborate and collect valuable data from the field. However, a robot in situations where it does not have access to GPS signals, such as in an environmentally controlled, indoor, or underground environment, finds it difficult to locate using its sensor alone. As a result, robots sharing their local information to improve their localization estimates benefit the entire MRS team. There have been several attempts to model-based multi-robot localization using Radio Signal Strength Indicator (RSSI) as a source to calculate bearing information. We also utilize the RSSI for wireless networks generated through the communication of multiple robots in a system and aim to localize agents with high accuracy and efficiency in a dynamic environment for shared information fusion to refine the localization estimation. This estimator structure reduces one source of measurement correlation while appropriately incorporating others. This paper proposes a decentralized Multi-robot Synergistic Localization System (MRSL) for a dense and dynamic environment. Robots update their position estimation whenever new information receives from their neighbors. When the system senses the presence of other robots in the region, it exchanges position estimates and merges the received data to improve its localization accuracy. Our approach uses Bayesian rule-based integration, which has shown to be computationally efficient and applicable to asynchronous robotics communication. We have performed extensive simulation experiments with a varying number of robots to analyze the algorithm. MRSL's localization accuracy with RSSI outperformed other algorithms from the literature, showing a significant promise for future development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源