论文标题

刚性的非人性化局部系统

Rigid non-cohomologically rigid local systems

论文作者

de Jong, Johan, Esnault, Hélène, Groechenig, Michael

论文摘要

对于任何自然数量$ r \ ge 2 $,我们构建了一种不可约性的刚性非刚性僵化的刚性刚性刚性复杂的本地等级$ r $,该系统取决于$ r $。对于$ r = 2 $,我们构建了一种不可约性的刚性刚性刚性刚性的本地系统,该系统在准标记品种上$ 2 $ $ 2 $,该系统在固定Infinity的单粒粒子的共轭类别后将在共同体上变得僵化。 V2:我们添加了亚历山大·彼得罗夫(Alexander Petrov)的言论:通过将示例的外部产物(共同)刚性局部系统(带有无限单形状的僵化的局部系统)取代,我们获得了具有无限单构型的刚性非人性化局部局部系统的示例。

For any even natural number $r \ge 2$, we construct an irreducible rigid non-cohomologically rigid complex local system of rank $r$ on a smooth projective variety depending on $r$. For $r=2$, we construct an irreducible rigid non-cohomogically rigid local system of rank $2$ on a quasi-projective variety which becomes cohomologically rigid after fixing the conjugacy classes of the monodromies at infinity. v2: We added a remark due to Alexander Petrov: by taking the exterior product of our examples with a (cohomologically) rigid local system with infinite monodromy, we obtain examples of rigid non-cohomologically rigid local systems with infinite monodromy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源