论文标题
一种新方法,将深度学习与形状先验纳入心肌灌注SPECT图像中的左心室分割
A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images
论文作者
论文摘要
背景:心肌灌注SPECT(MPS)对左心室(LV)功能的评估取决于准确的心肌分割。本文的目的是开发和验证一种新方法,该方法将深度学习与形状先验结合在一起,以精确提取LV心肌以自动测量LV功能参数。方法:开发了具有形状变形模块的三维(3D)V-NET的分割体系结构。使用动态编程(DP)算法生成的形状先验,然后在模型训练期间限制并指导模型输出,以快速收敛和提高性能。分层的5倍交叉验证用于训练和验证我们的模型。结果:我们提出的方法的结果与地面真理的结果一致。 Our proposed model achieved a Dice similarity coefficient (DSC) of 0.9573(0.0244), 0.9821(0.0137), and 0.9903(0.0041), a Hausdorff distances (HD) of 6.7529(2.7334) mm, 7.2507(3.1952) mm, and 7.6121(3.0134) mm in extracting内膜,心肌和心外膜分别。结论:我们提出的方法在提取LV心肌轮廓和评估LV功能方面具有很高的准确性。
Background: The assessment of left ventricular (LV) function by myocardial perfusion SPECT (MPS) relies on accurate myocardial segmentation. The purpose of this paper is to develop and validate a new method incorporating deep learning with shape priors to accurately extract the LV myocardium for automatic measurement of LV functional parameters. Methods: A segmentation architecture that integrates a three-dimensional (3D) V-Net with a shape deformation module was developed. Using the shape priors generated by a dynamic programming (DP) algorithm, the model output was then constrained and guided during the model training for quick convergence and improved performance. A stratified 5-fold cross-validation was used to train and validate our models. Results: Results of our proposed method agree well with those from the ground truth. Our proposed model achieved a Dice similarity coefficient (DSC) of 0.9573(0.0244), 0.9821(0.0137), and 0.9903(0.0041), a Hausdorff distances (HD) of 6.7529(2.7334) mm, 7.2507(3.1952) mm, and 7.6121(3.0134) mm in extracting the endocardium, myocardium, and epicardium, respectively. Conclusion: Our proposed method achieved a high accuracy in extracting LV myocardial contours and assessing LV function.