论文标题

一种新方法,将深度学习与形状先验纳入心肌灌注SPECT图像中的左心室分割

A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images

论文作者

Zhu, Fubao, Zhao, Jinyu, Zhao, Chen, Tang, Shaojie, Nan, Jiaofen, Li, Yanting, Zhao, Zhongqiang, Shi, Jianzhou, Chen, Zenghong, Jiang, Zhixin, Zhou, Weihua

论文摘要

背景:心肌灌注SPECT(MPS)对左心室(LV)功能的评估取决于准确的心肌分割。本文的目的是开发和验证一种新方法,该方法将深度学习与形状先验结合在一起,以精确提取LV心肌以自动测量LV功能参数。方法:开发了具有形状变形模块的三维(3D)V-NET的分割体系结构。使用动态编程(DP)算法生成的形状先验,然后在模型训练期间限制并指导模型输出,以快速收敛和提高性能。分层的5倍交叉验证用于训练和验证我们的模型。结果:我们提出的方法的结果与地面真理的结果一致。 Our proposed model achieved a Dice similarity coefficient (DSC) of 0.9573(0.0244), 0.9821(0.0137), and 0.9903(0.0041), a Hausdorff distances (HD) of 6.7529(2.7334) mm, 7.2507(3.1952) mm, and 7.6121(3.0134) mm in extracting内膜,心肌和心外膜分别。结论:我们提出的方法在提取LV心肌轮廓和评估LV功能方面具有很高的准确性。

Background: The assessment of left ventricular (LV) function by myocardial perfusion SPECT (MPS) relies on accurate myocardial segmentation. The purpose of this paper is to develop and validate a new method incorporating deep learning with shape priors to accurately extract the LV myocardium for automatic measurement of LV functional parameters. Methods: A segmentation architecture that integrates a three-dimensional (3D) V-Net with a shape deformation module was developed. Using the shape priors generated by a dynamic programming (DP) algorithm, the model output was then constrained and guided during the model training for quick convergence and improved performance. A stratified 5-fold cross-validation was used to train and validate our models. Results: Results of our proposed method agree well with those from the ground truth. Our proposed model achieved a Dice similarity coefficient (DSC) of 0.9573(0.0244), 0.9821(0.0137), and 0.9903(0.0041), a Hausdorff distances (HD) of 6.7529(2.7334) mm, 7.2507(3.1952) mm, and 7.6121(3.0134) mm in extracting the endocardium, myocardium, and epicardium, respectively. Conclusion: Our proposed method achieved a high accuracy in extracting LV myocardial contours and assessing LV function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源