论文标题
恢复涡流粒子方法:无网状大涡模拟的稳定配方
Reviving the Vortex Particle Method: A Stable Formulation for Meshless Large Eddy Simulation
论文作者
论文摘要
Vortex粒子方法(VPM)是用于以其速度涡度形式求解Navier-Stokes方程的计算流体动力学(CFD)的一种无网格方法。 VPM使用拉格朗日方案,该方案不仅避免了网格生成的障碍,而且还可以在远距离的情况下保存涡流结构,而数值最小,同时比基于网格的CFD更快地保持数量级。但是,当涡流结构分解接近湍流方案时,VPM在数值上是不稳定的。在这项研究中,我们在数值稳定的方案中将VPM重新制定为大型涡流模拟(LES),而不会增加其计算成本。一组新的VPM管理方程是从LES滤波的Navier-Stokes方程中得出的。新方程通过重塑受涡旋拉伸的涡旋元件来增强质量和角动量的保护。除了VPM重新印象外,还开发了一个新的各向异性动力学模型(SFS)涡流拉伸。该SFS模型非常适合具有具有相干涡流结构的湍流,其中主要的级联机构是涡流拉伸。对流,粘性扩散和涡流拉伸通过模拟隔离和跨越涡流环的模拟来验证。湍流的平均和波动组成部分通过模拟湍流圆喷射进行验证,在该圆形喷气机中,雷诺应力直接解析并与实验测量结果进行了比较。最后,该方案的计算效率在悬停的飞机转子的模拟中展示了,表明我们的无网状LE比具有相似忠诚度的网状LE的速度快100倍,同时比低效率不稳定的Reynolds-Reynolds-a-a reynolds-a navier-Stokes-Stokes Simulation和1000倍越来越高于高级仿真的LE,而基于网状的LE则比低效率不稳定的速度速度快10倍。
The vortex particle method (VPM) is a mesh-free approach to computational fluid dynamics (CFD) solving the Navier-Stokes equations in their velocity-vorticity form. The VPM uses a Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves vortical structures over long distances with minimal numerical dissipation while being orders of magnitude faster than conventional mesh-based CFD. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In this study, we reformulate the VPM as a large eddy simulation (LES) in a scheme that is numerically stable, without increasing its computational cost. A new set of VPM governing equations are derived from the LES-filtered Navier-Stokes equations. The new equations reinforce conservation of mass and angular momentum by reshaping the vortex elements subject to vortex stretching. In addition to the VPM reformulation, a new anisotropic dynamic model of subfilter-scale (SFS) vortex stretching is developed. This SFS model is well suited for turbulent flows with coherent vortical structures where the predominant cascade mechanism is vortex stretching. Advection, viscous diffusion, and vortex stretching are validated through simulation of isolated and leapfrogging vortex rings. Mean and fluctuating components of turbulent flow are validated through simulation of a turbulent round jet, where Reynolds stresses are resolved directly and compared to experimental measurements. Finally, the computational efficiency of the scheme is showcased in the simulation of an aircraft rotor in hover, showing our meshless LES to be 100x faster than a mesh-based LES with similar fidelity, while being 10x faster than a low-fidelity unsteady Reynolds-average Navier-Stokes simulation and 1000x faster than a high-fidelity detached-eddy simulation.