论文标题

可证明安全的量子随机性扩展,并具有未表征的同伴检测

Provably-secure quantum randomness expansion with uncharacterised homodyne detection

论文作者

Wang, Chao, Primaatmaja, Ignatius William, Ng, Hong Jie, Haw, Jing Yan, Ho, Raymond, Zhang, Jianran, Zhang, Gong, Lim, Charles Ci-Wen

论文摘要

量子随机数生成器(QRNG)能够生成具有随机的数字,即使是持有某些侧面信息的代理商。这样的系统通常要求使用所使用的元素经过精确校准,并有效认证以进行可靠的安全性分析。但是,这可能在实验上具有挑战性,并导致潜在的侧渠道,这可能会损害QRNG的安全性。 在这项工作中,我们建议,设计和实验证明了QRNG协议,该协议完全消除了测量设备的校准要求。此外,我们的协议可以防止量子侧信息。我们还考虑了有限尺寸的效果,并消除了测量端的独立和相同分布的要求。 更重要的是,我们的QRNG方案具有一个简单的实现,该实现仅使用标准的光学组件,并且可以在集成的光子平台上实现。为了验证协议的可行性和实用性,我们建立了一个具有自制同型探测器的纤维光学实验系统,在1550nm时有效效率为91.7%。该系统的工作速率为2.5MHz,并在1E10回合时获得了4.98kbits/s的净随机性膨胀率。我们的结果为具有自测功能和可证明的安全性的集成QRNG铺平了道路。

Quantum random number generators (QRNGs) are able to generate numbers that are certifiably random, even to an agent who holds some side-information. Such systems typically require that the elements being used are precisely calibrated and validly certified for a credible security analysis. However, this can be experimentally challenging and result in potential side-channels which could compromise the security of the QRNG. In this work, we propose, design and experimentally demonstrate a QRNG protocol that completely removes the calibration requirement for the measurement device. Moreover, our protocol is secure against quantum side-information. We also take into account the finite-size effects and remove the independent and identically distributed requirement for the measurement side. More importantly, our QRNG scheme features a simple implementation which uses only standard optical components and are readily implementable on integrated-photonic platforms. To validate the feasibility and practicability of the protocol, we set up a fibre-optical experimental system with a home-made homodyne detector with an effective efficiency of 91.7% at 1550nm. The system works at a rate of 2.5MHz, and obtains a net randomness expansion rate of 4.98kbits/s at 1E10 rounds. Our results pave the way for an integrated QRNG with self-testing feature and provable security.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源