论文标题

关于推荐系统公平性的调查

A Survey on the Fairness of Recommender Systems

论文作者

Wang, Yifan, Ma, Weizhi, Zhang, Min, Liu, Yiqun, Ma, Shaoping

论文摘要

推荐系统是减轻信息超负荷挑战并在人们的日常生活中发挥重要作用的重要工具。由于建议涉及社会资源的分配(例如,工作建议),因此一个重要的问题是建议是否公平。不公平的建议不仅是不道德的,而且损害了推荐系统本身的长期利益。结果,推荐系统中的公平问题最近引起了人们越来越多的关注。但是,由于多个复杂的资源分配过程和各种公平定义,建议公平性的研究被分散了。为了填补这一空白,我们回顾了包括Tois,Sigir和WWW在内的顶级会议/期刊上发表的60多篇论文。首先,我们在建议中总结了公平定义,并提供了几种观点来对公平问题进行分类。然后,我们回顾公平研究中的建议数据集和测量值,并在建议中提供了公平方法的精心分类法。最后,我们通过概述了一些有希望的未来方向来结束这项调查。

Recommender systems are an essential tool to relieve the information overload challenge and play an important role in people's daily lives. Since recommendations involve allocations of social resources (e.g., job recommendation), an important issue is whether recommendations are fair. Unfair recommendations are not only unethical but also harm the long-term interests of the recommender system itself. As a result, fairness issues in recommender systems have recently attracted increasing attention. However, due to multiple complex resource allocation processes and various fairness definitions, the research on fairness in recommendation is scattered. To fill this gap, we review over 60 papers published in top conferences/journals, including TOIS, SIGIR, and WWW. First, we summarize fairness definitions in the recommendation and provide several views to classify fairness issues. Then, we review recommendation datasets and measurements in fairness studies and provide an elaborate taxonomy of fairness methods in the recommendation. Finally, we conclude this survey by outlining some promising future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源