论文标题
数学模型桥接终生学习的不同时间尺度
Mathematical model bridges disparate timescales of lifelong learning
论文作者
论文摘要
终身学习发生在几分钟到几十年的时间尺度上。人们可以在新技能上失去自己,练习几个小时,直到精疲力尽。他们可以在几天或几十年的时间里掌握掌握,也许完全放弃了旧技能,以寻找新的挑战。对学习的充分理解需要一个整合这些时间尺度的帐户。在这里,我们提出了一个最小的定量模型,该模型统一了学习的嵌套时间尺度。我们的动态模型恢复了技能习得的经典记载,并描述了学习如何从动机,疲劳和工作的动态动态发展,同时也位于技能选择,精通和遗弃的长期动态中。我们应用此模型来探索各种培训制度的好处和陷阱,并表征动机和技能发展方面的个体差异。我们的模型将以前不同的时间尺度(以及通常在每个时间范围内研究的子学科)连接起来,以提供有关技能获取时间的统一说明。
Lifelong learning occurs on timescales ranging from minutes to decades. People can lose themselves in a new skill, practicing for hours until exhausted. And they can pursue mastery over days or decades, perhaps abandoning old skills entirely to seek out new challenges. A full understanding of learning requires an account that integrates these timescales. Here, we present a minimal quantitative model that unifies the nested timescales of learning. Our dynamical model recovers classic accounts of skill acquisition, and describes how learning emerges from moment-to-moment dynamics of motivation, fatigue, and work, while also situated within longer-term dynamics of skill selection, mastery, and abandonment. We apply this model to explore the benefits and pitfalls of a variety of training regimes and to characterize individual differences in motivation and skill development. Our model connects previously disparate timescales -- and the subdisciplines that typically study each timescale in isolation -- to offer a unified account of the timecourse of skill acquisition.