论文标题

使用深度学习启发的单图像改进轨迹计算

Improving trajectory calculations using deep learning inspired single image superresolution

论文作者

Brecht, Rüdiger, Bakels, Lucie, Bihlo, Alex, Stohl, Andreas

论文摘要

拉格朗日轨迹或粒子分散模型以及半拉格朗日的对流方案需要气象数据,例如在与常规网格独立移动的粒子的精确时空位置,例如风,温度和地球电位。传统上,这种高分辨率数据是通过从气象模型或重新分析的网格数据中插值来获得的,例如在时空中使用线性插值。但是,插值错误是这些模型的巨大错误来源。减少它们需要具有较高空间和时间分辨率的气象输入字段,这可能并不总是可用,并且可能导致严重的数据存储和传输问题。在这里,我们将此问题解释为单个图像序列任务。我们将其本地分辨率可用的气象领域解释为低分辨率图像,并训练深层神经网络以将其提高到更高的分辨率,从而为Lagrangian模型提供了更准确的数据。我们训练各种版本的最先进的增强的深层剩余网络,以在低分辨率ERA5重新分析数据上进行超分辨率,以将这些数据提高到任意空间分辨率。我们表明,由此产生的向上尺寸的风场具有均方根误差,仅在可接受的计算推理成本下用线性空间插值获得的风的大小。在使用Lagrangian颗粒分散模型的测试设置中,并减少了分辨率的风场,我们证明,从“地面真相”轨迹中计算出的轨迹的绝对水平运输偏差至少在使用49.5%(21.8%)的lindition to line to in toty的轨迹上计算出的“地面真相”轨迹,该轨迹的绝对水平运输偏差(21.8%)的轨迹降低了49.5%(21.8%)的范围。 (4°至2°)分辨率数据。

Lagrangian trajectory or particle dispersion models as well as semi-Lagrangian advection schemes require meteorological data such as wind, temperature and geopotential at the exact spatio-temporal locations of the particles that move independently from a regular grid. Traditionally, this high-resolution data has been obtained by interpolating the meteorological parameters from the gridded data of a meteorological model or reanalysis, e.g. using linear interpolation in space and time. However, interpolation errors are a large source of error for these models. Reducing them requires meteorological input fields with high space and time resolution, which may not always be available and can cause severe data storage and transfer problems. Here, we interpret this problem as a single image superresolution task. We interpret meteorological fields available at their native resolution as low-resolution images and train deep neural networks to up-scale them to higher resolution, thereby providing more accurate data for Lagrangian models. We train various versions of the state-of-the-art Enhanced Deep Residual Networks for Superresolution on low-resolution ERA5 reanalysis data with the goal to up-scale these data to arbitrary spatial resolution. We show that the resulting up-scaled wind fields have root-mean-squared errors half the size of the winds obtained with linear spatial interpolation at acceptable computational inference costs. In a test setup using the Lagrangian particle dispersion model FLEXPART and reduced-resolution wind fields, we demonstrate that absolute horizontal transport deviations of calculated trajectories from "ground-truth" trajectories calculated with undegraded 0.5° winds are reduced by at least 49.5% (21.8%) after 48 hours relative to trajectories using linear interpolation of the wind data when training on 2° to 1° (4° to 2°) resolution data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源