论文标题
使用稀疏的4D卷积中的3D激光雷达数据中移动对象分割
Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions
论文作者
论文摘要
自动驾驶汽车的主要挑战是在看不见的动态环境中导航。将移动对象与静态对象分开对于导航,姿势估计以及了解其他交通参与者在不久的将来可能如何移动至关重要。在这项工作中,我们解决了区分当前移动物体(如行人行人或驾驶汽车)的3D激光雷达点的问题,从非移动物体(如墙壁)中获得的点,但还停放了汽车。我们的方法采用了一系列观察到的LiDAR扫描,并将它们变成素化的稀疏4D点云。我们应用计算高效的稀疏4D旋转来共同提取空间和时间特征,并预测序列中所有点的移动对象置信度得分。我们制定了一种退缩的地平线策略,使我们能够在线预测移动对象,并根据新观察结果对GO进行预测。我们使用二进制贝叶斯过滤器递归整合了扫描的新预测,从而产生了更强大的估计。我们在Semantickitti移动对象细分挑战上评估了我们的方法,并显示出比现有方法更准确的预测。由于我们的方法仅在随着时间的推移中的点云的几何信息上运行,因此它可以很好地概括为新的,看不见的环境,我们在Apollo数据集上进行了评估。
A key challenge for autonomous vehicles is to navigate in unseen dynamic environments. Separating moving objects from static ones is essential for navigation, pose estimation, and understanding how other traffic participants are likely to move in the near future. In this work, we tackle the problem of distinguishing 3D LiDAR points that belong to currently moving objects, like walking pedestrians or driving cars, from points that are obtained from non-moving objects, like walls but also parked cars. Our approach takes a sequence of observed LiDAR scans and turns them into a voxelized sparse 4D point cloud. We apply computationally efficient sparse 4D convolutions to jointly extract spatial and temporal features and predict moving object confidence scores for all points in the sequence. We develop a receding horizon strategy that allows us to predict moving objects online and to refine predictions on the go based on new observations. We use a binary Bayes filter to recursively integrate new predictions of a scan resulting in more robust estimation. We evaluate our approach on the SemanticKITTI moving object segmentation challenge and show more accurate predictions than existing methods. Since our approach only operates on the geometric information of point clouds over time, it generalizes well to new, unseen environments, which we evaluate on the Apollo dataset.