论文标题

匹配的元素和完全阻塞的阶乘设计的推断

Inference for Matched Tuples and Fully Blocked Factorial Designs

论文作者

Bai, Yuehao, Liu, Jizhou, Tabord-Meehan, Max

论文摘要

本文研究了用多种治疗的随机对照试验中的推论,其中根据“匹配的元素”设计确定治疗状态。在这里,通过匹配的元组设计,我们是指一个实验设计,其中对单位进行了采样。从感兴趣的人群中,将基数等于治疗的数量分为“同质”块,最后,在每个块中,每种治疗都是随机均匀分配的一次。我们首先研究了一般环境中匹配的元素设计的估计和推断,其中感兴趣的参数是每种处理的平均潜在结果的线性对比的向量。该形式的参数包括用于比较一种相对于另一种治疗的标准平均治疗效果,但还包括可能在分析阶乘设计中感兴趣的参数。我们首先建立了样品模拟估计量在渐近正常上的条件,并构建其相应渐近方差的一致估计器。结合这些结果可以根据这些估计量建立测试的渐近精确性。相比之下,我们表明,对于基于线性回归构建的t检验的两个常见测试程序,一个测试通常是保守的,而另一个通常无效。我们继续应用结果来研究我们所谓的“完全封锁” 2^castorial Designs的渐近性能,这些设计仅匹配到完整的阶乘实验中。利用我们先前的结果,我们确定我们的估计器在完全阻滞的设计下实现了较低的渐近方差,而在任何分层的阶乘设计下,将实验样品分层为有限数量的“大”地层。一项模拟研究和经验应用说明了我们结果的实际相关性。

This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include standard average treatment effects used to compare one treatment relative to another, but also include parameters which may be of interest in the analysis of factorial designs. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic exactness of tests based on these estimators. In contrast, we show that, for two common testing procedures based on t-tests constructed from linear regressions, one test is generally conservative while the other generally invalid. We go on to apply our results to study the asymptotic properties of what we call "fully-blocked" 2^K factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design which stratifies the experimental sample into a finite number of "large" strata. A simulation study and empirical application illustrate the practical relevance of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源