论文标题
局部时空表示学习的纵向神经图像分析
Local Spatiotemporal Representation Learning for Longitudinally-consistent Neuroimage Analysis
论文作者
论文摘要
医学计算机视觉的最新自我监督进步利用了在下游任务(例如分割)之前预处理的全球和局部解剖自我相似性。但是,当前方法假设I.I.D.图像采集是在临床研究设计中无效的,其中随访纵向扫描跟踪特定于主体的时间变化。此外,现有的自我监督方法用于医学上与图像到图像架构相关的架构仅利用空间或时间自相似性,并且仅通过在单个图像尺度上应用的损失来进行,而天真的多尺度时空时空扩展却崩溃了。对于这些目的,本文做出了两个贡献:(1)它提出了一种局部和多规模的时空表示方法,用于对纵向图像进行训练的图像到图像架构。它利用了学到的多尺度主体内特征的时空自相似性来进行训练,并开发出几种特征正规化,以避免崩溃的身份表示。 (2)在填充过程中,它提出了一个令人惊讶的简单的自我监督分段一致性,以利用受试者内的相关性。该框架以单次分割设置为基准,所提出的框架的表现优于良好的随机定位基线和为I.I.D.设计的当前自我监督技术。和纵向数据集。在纵向神经退行性的成年MRI和发育的婴儿脑MRI中都证明了这些改进,并产生更高的性能和纵向一致性。
Recent self-supervised advances in medical computer vision exploit global and local anatomical self-similarity for pretraining prior to downstream tasks such as segmentation. However, current methods assume i.i.d. image acquisition, which is invalid in clinical study designs where follow-up longitudinal scans track subject-specific temporal changes. Further, existing self-supervised methods for medically-relevant image-to-image architectures exploit only spatial or temporal self-similarity and only do so via a loss applied at a single image-scale, with naive multi-scale spatiotemporal extensions collapsing to degenerate solutions. To these ends, this paper makes two contributions: (1) It presents a local and multi-scale spatiotemporal representation learning method for image-to-image architectures trained on longitudinal images. It exploits the spatiotemporal self-similarity of learned multi-scale intra-subject features for pretraining and develops several feature-wise regularizations that avoid collapsed identity representations; (2) During finetuning, it proposes a surprisingly simple self-supervised segmentation consistency regularization to exploit intra-subject correlation. Benchmarked in the one-shot segmentation setting, the proposed framework outperforms both well-tuned randomly-initialized baselines and current self-supervised techniques designed for both i.i.d. and longitudinal datasets. These improvements are demonstrated across both longitudinal neurodegenerative adult MRI and developing infant brain MRI and yield both higher performance and longitudinal consistency.