论文标题
圆锥限制的信息理论
Cone-Restricted Information Theory
论文作者
论文摘要
它引起的最大相关性熵和条件最小透气已成为一声信息理论的核心。两者都可以根据阳性半芬锥的圆锥计划表示。最近,结果表明,相同的圆锥程序更改为可分离锥体,就可以通过量子通道传达经典信息的操作解释。在这项工作中,我们概括了更换锥体的框架,以确定哪些导致量子信息理论依赖于阳性半芬锥,哪些可以推广。如果锥体指数呈指数增加,但从未近似阳性的半芬矿锥体,我们显示了完全量子Stein的引理和渐近均衡性能分解。但是,我们显示了CQ状态,可分离的锥体足以恢复渐近理论,从而在完全和部分量子设置之间进行了强烈的区别。我们提出了延长的条件最小透镜的平行结果。在此过程中,我们将K-Superpostity通道的概念扩展到了超通道。我们还提出了此框架的操作用途。我们首先显示CHOI操作员的圆锥限制的最小渗透率捕获了使用限制测量值的纠缠无噪声的无噪声经典交流的度量。我们表明,量子大化结果自然概括为其他锥体。作为一个新颖的例子,我们引入了一种新的最小透射率样量,该数量捕获了量子通道的量子化量子,这是用Bentochastic预处理捕获的。最后,我们将此框架与一般的圆锥形规范及其非依恋联系起来。在整个工作中,我们强调了引入的措施与一般凸资源理论的关系。特别是,我们探讨了捕获连贯性/阿贝尔对称性的局部和资源理论的两个资源理论。
The max-relative entropy and the conditional min-entropy it induces have become central to one-shot information theory. Both may be expressed in terms of a conic program over the positive semidefinite cone. Recently, it was shown that the same conic program altered to be over the separable cone admits an operational interpretation in terms of communicating classical information over a quantum channel. In this work, we generalize this framework of replacing the cone to determine which results in quantum information theory rely upon the positive semidefinite cone and which can be generalized. We show the fully quantum Stein's lemma and asymptotic equipartition property break down if the cone exponentially increases in resourcefulness but never approximates the positive semidefinite cone. However, we show for CQ states, the separable cone is sufficient to recover the asymptotic theory, thereby drawing a strong distinction between the fully and partial quantum settings. We present parallel results for the extended conditional min-entropy. In doing so, we extend the notion of k-superpositive channels to superchannels. We also present operational uses of this framework. We first show the cone restricted min-entropy of a Choi operator captures a measure of entanglement-assisted noiseless classical communication using restricted measurements. We show that quantum majorization results naturally generalize to other cones. As a novel example, we introduce a new min-entropy-like quantity that captures the quantum majorization of quantum channels in terms of bistochastic pre-processing. Lastly, we relate this framework to general conic norms and their non-additivity. Throughout this work we emphasize the introduced measures' relationship to general convex resource theories. In particular, we look at both resource theories that capture locality and resource theories of coherence/Abelian symmetries.