论文标题

对随机信号的线性估算的判别性和生成性学习[讲义]

Discriminative and Generative Learning for Linear Estimation of Random Signals [Lecture Notes]

论文作者

Shlezinger, Nir, Routtenberg, Tirza

论文摘要

信号处理中的推理任务通常以一些缺失的实例特定参数的可靠统计建模为特征。一种常规方法使用数据来估计这些缺失的参数,然后根据估计模型估算这些参数。另外,还可以利用数据直接学习端到端的推理映射。这些用于结合部分统计模型和推理数据的方法与机器学习文献中使用的生成和判别模型的概念有关,通常在分类器的背景下考虑。本讲座的目的是介绍通过部分已知的统计模型推断生成和歧视性学习的概念。尽管机器学习系统通常缺乏传统信号处理方法的可解释性,但我们专注于一个简单的设置,在该设置中,人们可以以可访问的方式来解释和比较与信号处理读者相关的方法。特别是,我们在共同的高斯环境中以均方误差(MSE)目标(即线性估计设置设置)来说明贝叶斯信号估计任务的方法。

Inference tasks in signal processing are often characterized by the availability of reliable statistical modeling with some missing instance-specific parameters. One conventional approach uses data to estimate these missing parameters and then infers based on the estimated model. Alternatively, data can also be leveraged to directly learn the inference mapping end-to-end. These approaches for combining partially-known statistical models and data in inference are related to the notions of generative and discriminative models used in the machine learning literature, typically considered in the context of classifiers. The goal of this lecture note is to introduce the concepts of generative and discriminative learning for inference with a partially-known statistical model. While machine learning systems often lack the interpretability of traditional signal processing methods, we focus on a simple setting where one can interpret and compare the approaches in a tractable manner that is accessible and relevant to signal processing readers. In particular, we exemplify the approaches for the task of Bayesian signal estimation in a jointly Gaussian setting with the mean-squared error (MSE) objective, i.e., a linear estimation setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源