论文标题
从半导体跨国的超快不连贯发射的次秒转向
Sub picosecond steering of ultrafast incoherent emission from semiconductor metasurfaces
论文作者
论文摘要
从单层整合的来源中动态转导FS脉冲的能力是纳米光子和超快光学领域的关键里程碑。由光学共振的元原子制成的可重构元面的新生场在通过相位的次波长度控制光,光幅度和光的极化来操纵光 - 物质相互作用方面表现出了巨大的希望。这些主动的跨曲面是使用可重构空间相位曲线任意转换入射波前的,因此仅限于操纵相干外部源。通过将不连贯的发射器与元原子整合而获得的发光元面积已被用来静态地提高发射因子通过增强发射的量子效率,并控制光的远场发射特性,使光的远场发射特性和聚焦自发发射。但是,这种不一致的光源的主动操纵仍然是一个挑战,因为无法直接应用用于相干来源的当前相位敏感方法。超快时间尺度上不一致的光发射的时空控制可能会导致变革性的技术飞跃,从而使低功率发光二极管(LED)替换了高功率相干激光源,启用全息光照相LED和其他关键的光学传输应用程序,包括远程感应,感知,速度,速度和高速系统。在这项工作中,我们从理论上预测并在实验上进行了第一次证明,从光发出的跨表面从70°的超快不一致的发射范围内进行了次秒转向。
The ability to dynamically steer fs pulses from a monolithically integrated source is a critical milestone for the fields of nanophotonics and ultrafast optics. The nascent field of reconfigurable metasurfaces -- made of optically resonant meta-atoms -- has shown great promise in manipulating light-matter interactions through subwavelength control of the phase, amplitude, and polarization of light. These active metasurfaces arbitrarily transform an incident wavefront using a reconfigurable spatial phase profile and thus have been limited to manipulating coherent external sources. Light emitting metasurfaces obtained through integration of incoherent emitters with meta-atoms, have been used to statically increase the quantum efficiency of the emission through Purcell factor enhancement and control the far-field emission properties of the light to collimate and focus spontaneous emission. Active manipulation of such incoherent light sources, however, remains a challenge as current phase-sensitive approaches used for coherent sources cannot be directly applied. Spatiotemporal control at ultrafast timescales of incoherent light emission could lead to a transformative technological leap allowing low-power light emitting diodes (LEDs) to replace high-power coherent laser sources, enabling holographic LED displays and other key optical transceiver applications including remote-sensing, perception, and high-speed optical communication systems. In this work, we theoretically predict and experimentally demonstrate for the first time, sub-picosecond steering over a 70° range of ultrafast incoherent emission from a light emitting metasurface.