论文标题
伪Convex Levi Corank的Gromov双曲线
Gromov hyperbolicity of pseudo-convex Levi corank one domains
论文作者
论文摘要
在研究了某些缩放域的Kobayashi指标之后,我们显示了无穷小的Kobayashi指标的稳定性和不同尺度过程中的综合距离。作为一种应用,我们证明有限类型的伪convex结构域有限的伪convex域,其中每个边界点的levi形式都具有corank的核心,相对于Kobayashi度量,我们是Gromov双曲线。本说明中的结果推广了Zimmer和Fiacchi关于弱伪convex域的Gromov双曲线的相关作品。
After a study of the Kobayashi metrics on certain scaled domains, we show the stabilities of the infinitesimal Kobayashi metrics and the integrated distances in different scaling processes. As an application, we prove that bounded pseudo-convex domains of finite type where the Levi form of every boundary point has corank one are Gromov hyperbolic with respect to the Kobayashi metric. The results in this note generalize Zimmer's and Fiacchi's related works on Gromov hyperbolicity of weakly pseudo-convex domains.