论文标题

当地拉普拉斯过滤器的高斯傅立叶金字塔

Gaussian Fourier Pyramid for Local Laplacian Filter

论文作者

Sumiya, Yuto, Otsuka, Tomoki, Maeda, Yoshihiro, Fukushima, Norishige

论文摘要

多尺度处理对于图像处理和计算机图形至关重要。光环是多尺度处理中的核心问题。通过扩展Laplacian金字塔具有具有边缘的属性,几种边缘保护分解可以解决局部拉普拉斯滤波(LLF)。它的处理成本很高;因此,提出了快速LLF的近似加速度,以线性插值多个拉普拉斯金字塔。本文通过傅立叶系列扩展进一步提高了精度,称为傅立叶LLF。我们的结果表明,对于相同数量的金字塔,傅立叶LLF具有更高的精度。此外,傅立叶LLF表现出用于内容自适应过滤的参数自适应特性。该代码可在以下网址获得:https://norishigefukushima.github.io/gaussianfourierpyramid/。

Multi-scale processing is essential in image processing and computer graphics. Halos are a central issue in multi-scale processing. Several edge-preserving decompositions resolve halos, e.g., local Laplacian filtering (LLF), by extending the Laplacian pyramid to have an edge-preserving property. Its processing is costly; thus, an approximated acceleration of fast LLF was proposed to linearly interpolate multiple Laplacian pyramids. This paper further improves the accuracy by Fourier series expansion, named Fourier LLF. Our results showed that Fourier LLF has a higher accuracy for the same number of pyramids. Moreover, Fourier LLF exhibits parameter-adaptive property for content-adaptive filtering. The code is available at: https://norishigefukushima.github.io/GaussianFourierPyramid/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源