论文标题
RT-DNA:实时约束可区分的神经体系结构搜索3D心脏Cine MRI分段
RT-DNAS: Real-time Constrained Differentiable Neural Architecture Search for 3D Cardiac Cine MRI Segmentation
论文作者
论文摘要
在各种实时MRI引导心脏干预措施中,准确分割了Cine磁共振成像(MRI)的时间框架(MRI)是至关重要的一步。为了获得快速准确的视觉援助,对分割框架的最大延迟和最小吞吐量有严格的要求。该任务上的最新神经网络主要是手工制作的,可以满足这些限制,同时达到了高精度。另一方面,尽管现有文献已经证明了神经体系结构搜索(NAS)在自动识别各种医学应用的最佳神经体系结构方面的力量,但它们主要以准确性为指导,有时是计算复杂性,而实时约束的重要性被忽略了。一个主要的挑战是,此类约束是不可差异的,因此与广泛使用的可区分NAS框架不兼容。在本文中,我们提出了一种策略,该策略在名为RT-DNA的可区分NAS框架中直接处理实时约束。扩展2017 MICCAI ACDC数据集的实验表明,与手动和自动设计的架构相比,RT-DNAS能够以更好的精度识别同时,同时满足实时约束。
Accurately segmenting temporal frames of cine magnetic resonance imaging (MRI) is a crucial step in various real-time MRI guided cardiac interventions. To achieve fast and accurate visual assistance, there are strict requirements on the maximum latency and minimum throughput of the segmentation framework. State-of-the-art neural networks on this task are mostly hand-crafted to satisfy these constraints while achieving high accuracy. On the other hand, while existing literature have demonstrated the power of neural architecture search (NAS) in automatically identifying the best neural architectures for various medical applications, they are mostly guided by accuracy, sometimes with computation complexity, and the importance of real-time constraints are overlooked. A major challenge is that such constraints are non-differentiable and are thus not compatible with the widely used differentiable NAS frameworks. In this paper, we present a strategy that directly handles real-time constraints in a differentiable NAS framework named RT-DNAS. Experiments on extended 2017 MICCAI ACDC dataset show that compared with state-of-the-art manually and automatically designed architectures, RT-DNAS is able to identify ones with better accuracy while satisfying the real-time constraints.