论文标题

AI应该看到什么?利用公众的意见来确定对AI的看法

What should AI see? Using the Public's Opinion to Determine the Perception of an AI

论文作者

Chan, Robin, Dardashti, Radin, Osinski, Meike, Rottmann, Matthias, Brüggemann, Dominik, Rücker, Cilia, Schlicht, Peter, Hüger, Fabian, Rummel, Nikol, Gottschalk, Hanno

论文摘要

深度神经网络(DNN)在解释图像数据方面取得了令人印象深刻的进步,因此可以在某种程度上可以在某种程度上使用它们,以在自动驾驶(例如自动驾驶)中使用它们。从道德的角度来看,AI算法应考虑到街道上的物体或受试者的脆弱性,范围从“完全没有”,例如这条路本身,是行人的“高脆弱性”。考虑到这一点的一种方法是定义一个语义类别与另一个语义类别的混淆成本,并使用基于成本的决策规则来解释概率,即DNN的输出。但是,如何定义成本结构是一个开放的问题,谁应该负责执行此操作,从而定义了AI-Algorithms实际上“看到”。作为一个可能的答案,我们遵循一种参与式方法,并建立在线调查,要求公众定义成本结构。我们介绍了调查设计和获取的数据以及评估,该评估还区分了视角(汽车乘客与外部交通参与者)和性别。使用基于仿真的$ f $检验,我们发现两组之间存在很大的显着差异。这些差异对在自动驾驶汽车的安全临界距离内可靠检测行人会产生后果。我们讨论与这种方法相关的道德问题,并从心理学的角度讨论了从人机相互作用到调查出现的问题。最后,我们在AI安全领域的行业领导者对基于调查的元素在自动驾驶中的AI功能中的适用性中提供了评论。

Deep neural networks (DNN) have made impressive progress in the interpretation of image data, so that it is conceivable and to some degree realistic to use them in safety critical applications like automated driving. From an ethical standpoint, the AI algorithm should take into account the vulnerability of objects or subjects on the street that ranges from "not at all", e.g. the road itself, to "high vulnerability" of pedestrians. One way to take this into account is to define the cost of confusion of one semantic category with another and use cost-based decision rules for the interpretation of probabilities, which are the output of DNNs. However, it is an open problem how to define the cost structure, who should be in charge to do that, and thereby define what AI-algorithms will actually "see". As one possible answer, we follow a participatory approach and set up an online survey to ask the public to define the cost structure. We present the survey design and the data acquired along with an evaluation that also distinguishes between perspective (car passenger vs. external traffic participant) and gender. Using simulation based $F$-tests, we find highly significant differences between the groups. These differences have consequences on the reliable detection of pedestrians in a safety critical distance to the self-driving car. We discuss the ethical problems that are related to this approach and also discuss the problems emerging from human-machine interaction through the survey from a psychological point of view. Finally, we include comments from industry leaders in the field of AI safety on the applicability of survey based elements in the design of AI functionalities in automated driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源