论文标题

关于康和公园的猜想的概括

On Generalizations of a Conjecture of Kang and Park

论文作者

Inagaki, Ryota, Tamura, Ryan

论文摘要

令$δ_d^{(a, - )}(n)= q_d^{(a)}(n) - q_d^{(a, - )}(n)$,其中$ q_d^{(a)}(a)}(a)}(n)$计数$ n $的零件数量至少和$ d $ d $ d $ d $ n $ n $ n $ a n $ a n $ a n $ a n $ a n $ a n $ a n $ a n和q a n $ q.将分区数计为$ \ equiv \ pm a \ pmod {d + 3} $不包括$ d + 3-a $ part。通过概括了康和帕克,邓肯,昆格,史威尔的猜想,第二位作者推测$δ_d^{(3, - - - )}(3, - )}(n)\ geq 0 $ for $ d \ geq 1 $ and $ n \ geq 1 $ and $ n \ geq 1 $,并且可以在$ d $ d $ dives $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3上prove。 They were also able to conjecture an analog for higher values of $a$ that the modified difference function $Δ_{d}^{(a,-,-)}(n) = q_{d}^{(a)}(n) - Q_{d}^{(a,-,-)}(n) \geq 0$ where $ q_ {d}^{(a, - , - , - )}(n)$将分区数计为零件$ \ equiv \ equiv \ pm a \ pmod {d + 3} $不包括$ a $ a $ a $ a $ a和$ d + 3-a $零件,并为无限多个类别的$ n $和$ d $提供了它。我们证明$δ_{d}^{(3, - )}(n)\ geq 0 $,除了有限的许多$ d $。我们还为所有人提供了广义猜想的证明,除了有限的$ d $,固定$ a $,并加强了邓肯,昆格,斯威舍和第二作者的结果。我们为广义猜想提供了$ D $线性下限的有条件证明,这改善了我们的无条件结果,基于对alder的最近经过验证的猜想的猜想。使用这种修改,我们可以加强对Kang和Park的猜想的这种概括,这非常允许$ a $作为一部分。此外,我们提供了渐近证据表明这种增强的猜想所拥有的。

Let $Δ_d^{(a,-)}(n) = q_d^{(a)}(n) - Q_d^{(a,-)}(n)$ where $q_d^{(a)}(n)$ counts the number of partitions of $n$ into parts with difference at least $d$ and size at least $a$, and $Q_d^{(a,-)}(n)$ counts the number of partitions into parts $\equiv \pm a \pmod{d + 3}$ excluding the $d+3-a$ part. Motivated by generalizing a conjecture of Kang and Park, Duncan, Khunger, Swisher, and the second author conjectured that $Δ_d^{(3,-)}(n)\geq 0$ for all $d\geq 1$ and $n\geq 1$ and were able to prove this when $d \geq 31$ is divisible by $3$. They were also able to conjecture an analog for higher values of $a$ that the modified difference function $Δ_{d}^{(a,-,-)}(n) = q_{d}^{(a)}(n) - Q_{d}^{(a,-,-)}(n) \geq 0$ where $Q_{d}^{(a,-,-)}(n)$ counts the number of partitions into parts $\equiv \pm a \pmod{d + 3}$ excluding the $a$ and $d+3-a$ parts and proved it for infinitely many classes of $n$ and $d$. We prove that $Δ_{d}^{(3,-)}(n) \geq 0$ for all but finitely many $d$. We also provide a proof of the generalized conjecture for all but finitely many $d$ for fixed $a$ and strengthen the results of Duncan, Khunger, Swisher, and the second author. We provide a conditional proof of a linear lower bound on $d$ for the generalized conjecture, which improves our unconditional result based on a conjectural modification of a recently proven conjecture of Alder. Using this modification, we obtain a strengthening of this generalization of Kang and Park's conjecture which remarkably allows $a$ as a part. Additionally, we provide asymptotic evidence that this strengthened conjecture holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源