论文标题

在细分,中间和总图中的混合度量维度上

On mixed metric dimension in subdivision, middle, and total graphs

论文作者

Ghalavand, Ali, Klavžar, Sandi, Tavakoli, Mostafa, Yero, Ismael G.

论文摘要

令$ g $为图,让$ s(g)$,$ m(g)$和$ t(g)$分别为$ g $的细分,中间和总图。令$ {\ rm dim}(g)$,$ {\ rm edim}(g)$和$ {\ rm mdim}(g)$是度量尺寸,边缘度量尺寸和$ g $的混合度量尺寸。在本文中,对于细分图,证明$ \ frac {1} {2} \ max \ {{{\ rm dim}(g),{\ rm edim}(g)\} \ leq leq leq leq {\ rm mdim}(s(g)(s(g))构建了一个图$ g_n $的一家$ {\ rm mdim}(g_n) - {\ rm mdim}(s(g_n))\ ge 2 $保留,这表明不平等$ {\ rm mdim}(s(g)(g)(s(g)) $ g $,$ {\ rm mdim}(s(g))= {\ rm mdim}(g)$。对于中间图,证明$ {\ rm dim}(m(g))\ leq {\ rm mdim}(g)$持有,并且如果$ g $是树,则带有$ n_1(g)$叶子,然后$ {\ rm dim}(m(g)(g)(g))= {\ rm mdim mdim} = {\ rm mdim}(g)(g)(g)=此外,对于总图,证明$ {\ rm mdim}(t(g))= 2n_1(g)$和$ {\ rm dim}(g)\ leq {\ leq {\ rm dim}(t(g))

Let $G$ be a graph and let $S(G)$, $M(G)$, and $T(G)$ be the subdivision, the middle, and the total graph of $G$, respectively. Let ${\rm dim}(G)$, ${\rm edim}(G)$, and ${\rm mdim}(G)$ be the metric dimension, the edge metric dimension, and the mixed metric dimension of $G$, respectively. In this paper, for the subdivision graph it is proved that $\frac{1}{2}\max\{{\rm dim}(G),{\rm edim}(G)\}\leq{\rm mdim}(S(G))\leq{\rm mdim}(G)$. A family of graphs $G_n$ is constructed for which ${\rm mdim}(G_n)-{\rm mdim}(S(G_n))\ge 2$ holds and this shows that the inequality ${\rm mdim}(S(G))\leq{\rm mdim}(G)$ can be strict, while for a cactus graph $G$, ${\rm mdim}(S(G))={\rm mdim}(G)$. For the middle graph it is proved that ${\rm dim}(M(G))\leq{\rm mdim}(G)$ holds, and if $G$ is tree with $n_1(G)$ leaves, then ${\rm dim}(M(G))={\rm mdim}(G)=n_1(G)$. Moreover, for the total graph it is proved that ${\rm mdim}(T(G))=2n_1(G)$ and ${\rm dim}(G)\leq{\rm dim}(T(G))\leq n_1(G)$ hold when $G$ is a tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源