论文标题
COSWARA:通过分析呼吸道样本和健康症状的网站申请,启用COVID-19筛选
Coswara: A website application enabling COVID-19 screening by analysing respiratory sound samples and health symptoms
论文作者
论文摘要
COVID-19大流行已经加快了关于替代,快速有效的COVID-19诊断方法设计的研究。在本文中,我们描述了Coswara工具,这是一个网站应用程序,旨在通过分析呼吸声样本和健康症状来启用COVID-19检测。使用此服务的用户可以使用连接到Internet的任何设备登录到网站,提供当前的健康症状信息,并记录很少有对应于呼吸,咳嗽和语音的声音。在分析此信息上的一分钟内,网站工具将向用户输出COVID-19概率分数。随着COVID-19的大流行继续要求进行大规模和可扩展的人口水平测试,我们假设所提出的工具为此提供了潜在的解决方案。
The COVID-19 pandemic has accelerated research on design of alternative, quick and effective COVID-19 diagnosis approaches. In this paper, we describe the Coswara tool, a website application designed to enable COVID-19 detection by analysing respiratory sound samples and health symptoms. A user using this service can log into a website using any device connected to the internet, provide there current health symptom information and record few sound sampled corresponding to breathing, cough, and speech. Within a minute of analysis of this information on a cloud server the website tool will output a COVID-19 probability score to the user. As the COVID-19 pandemic continues to demand massive and scalable population level testing, we hypothesize that the proposed tool provides a potential solution towards this.