论文标题

用机器学习电势增强电流诱导的分子动力学

Boosting current-induced molecular dynamics with machine-learning potential

论文作者

Li, Gen, Hu, Bing-Zhong, Mao, Wen-Hao, Yang, Nuo, Lü, Jing-Tao

论文摘要

在当前的携带单分子连接(SMJ)中,杂交能量传输过程的层次结构发生在高度非平衡的情况下,包括通过电子振动相互作用从电子转移到分子振动,通过电子振动的能量振动,通过非振动模式在不同的振动模式下通过Anharmonic耦合的能量运输和最终的电子产品来转移。对此类过程的全面理解是其作为单分子设备的潜在应用的先决条件。 $ ab $ $ $ INTIO $当前引起的分子动力学(MD)是解决这个复杂问题的理想方法。但是计算成本阻碍了其在现实SMJ的系统研究中的使用。在这里,我们通过使用机器学习势具有与密度功能理论相当的精确度来实现MD模拟速度的数量级提高。使用这种方法,我们表明带有石墨烯电极的SMJ比具有金电极的SMJ产生的数量级较小。我们的工作说明了石墨烯作为SMJ的电极的上热传输特性,这要归功于其更好的声子光谱与分子振动的重叠。

In a current-carrying single-molecular junction (SMJ), a hierarchy of hybrid energy transport processes takes place under a highly nonequilibrium situation, including energy transfer from electrons to molecular vibrations via electron-vibration interaction, energy redistribution within different vibrational modes via anharmonic coupling, and eventual energy transport to surrounding electrodes. A comprehensive understanding of such processes is a prerequisite for their potential applications as single-molecular devices. $Ab$ $initio$ current-induced molecular dynamics (MD) is an ideal approach to address this complicated problem. But the computational cost hinders its usage in systematic study of realistic SMJs. Here, we achieve orders of magnitude improvement in the speed of MD simulation by employing machine-learning potential with accuracy comparable to density functional theory. Using this approach, we show that SMJs with graphene electrodes generate order of magnitude less heating than those with gold electrodes. Our work illustrates the superior heat transport property of graphene as electrodes for SMJs, thanks to its better phonon spectral overlap with molecular vibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源