论文标题

具有物理增强神经网络的有限电弹性

Finite electro-elasticity with physics-augmented neural networks

论文作者

Klein, Dominik K., Ortigosa, Rogelio, Martínez-Frutos, Jesús, Weeger, Oliver

论文摘要

在当前的工作中,提出了基于机器学习的基于机器学习的本构模型,用于有限变形时的电力耦合材料行为。使用不同的不变性集作为输入,内部能量密度被公式为凸神经网络。通过这种方式,该模型满足了多凸状条件,从而确保物质稳定性以及热力学一致性,客观性,材料对称性和生长条件。根据所考虑的不变性,该物理学增强的机器学习模型可以用于可压缩或几乎不可压缩的材料行为,以及任意的材料对称性类别。该方法的适用性和多功能性是通过在具有分析势能产生的横向各向同性数据上校准的,以及分析性同质化的,横向的层状层压板复合材料和数值同质化的Cocipic Metamegial Cobialiged Cobatamatamatamatamial的有效组成型建模。这些检查表明,物理增强的神经网络还为多物理材料建模(例如非线性电弹性)提供了出色的概括。

In the present work, a machine learning based constitutive model for electro-mechanically coupled material behavior at finite deformations is proposed. Using different sets of invariants as inputs, an internal energy density is formulated as a convex neural network. In this way, the model fulfills the polyconvexity condition which ensures material stability, as well as thermodynamic consistency, objectivity, material symmetry, and growth conditions. Depending on the considered invariants, this physics-augmented machine learning model can either be applied for compressible or nearly incompressible material behavior, as well as for arbitrary material symmetry classes. The applicability and versatility of the approach is demonstrated by calibrating it on transversely isotropic data generated with an analytical potential, as well as for the effective constitutive modeling of an analytically homogenized, transversely isotropic rank-one laminate composite and a numerically homogenized cubic metamaterial. These examinations show the excellent generalization properties that physics-augmented neural networks offer also for multi-physical material modeling such as nonlinear electro-elasticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源