论文标题

多少钱?一项关于基于分数生成模型的扩散时间的研究

How Much is Enough? A Study on Diffusion Times in Score-based Generative Models

论文作者

Franzese, Giulio, Rossi, Simone, Yang, Lixuan, Finamore, Alessandro, Rossi, Dario, Filippone, Maurizio, Michiardi, Pietro

论文摘要

基于得分的扩散模型是一类生成模型,其动力学由将噪声映射到数据中的随机微分方程描述。尽管最近的作品已经开始为这些模型奠定理论基础,但仍缺乏对扩散时间t的作用的分析理解。当前的最佳实践提倡大型T,以确保向前动力学使扩散足够接近已知和简单的噪声分布。但是,对于更好的分数匹配目标和更高的计算效率,应优选较小的t值。从扩散模型的各种解释开始,在这项工作中,我们量化了这一权衡,并提出了一种新的方法来通过采用较小的扩散时间来提高训练和采样的质量和效率。实际上,我们展示了如何使用辅助模型来弥合理想和模拟向前动力学之间的间隙,然后进行标准的反向扩散过程。经验结果支持我们的分析;对于图像数据,我们的方法是竞争性W.R.T.根据标准样本质量指标和对数可能性的最先进。

Score-based diffusion models are a class of generative models whose dynamics is described by stochastic differential equations that map noise into data. While recent works have started to lay down a theoretical foundation for these models, an analytical understanding of the role of the diffusion time T is still lacking. Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution; however, a smaller value of T should be preferred for a better approximation of the score-matching objective and higher computational efficiency. Starting from a variational interpretation of diffusion models, in this work we quantify this trade-off, and suggest a new method to improve quality and efficiency of both training and sampling, by adopting smaller diffusion times. Indeed, we show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process. Empirical results support our analysis; for image data, our method is competitive w.r.t. the state-of-the-art, according to standard sample quality metrics and log-likelihood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源