论文标题

在类优先位置下流媒体数据的轻巧条件模型外推

Lightweight Conditional Model Extrapolation for Streaming Data under Class-Prior Shift

论文作者

Tomaszewska, Paulina, Lampert, Christoph H.

论文摘要

我们介绍了Limes,这是一种通过非平稳流数据学习的新方法,灵感来自元学习的最新成功。主要思想不是尝试学习一个单个分类器,该分类器必须在所有发生的数据分布中都能很好地工作,也不是许多单独的分类器,而是要利用混合策略:我们从中学习一组模型参数,从该参数中,从该参数中,通过分类器适应了任何特定数据分布的特定分类器。假设具有类别偏移的多类分类设置,可以在分析中进行适应步骤,仅在分类器的偏差术语受到影响的情况下进行分析。我们工作的另一个贡献是推断步骤,该步骤可根据先前的数据预测未来时间步骤的合适适应参数。结合起来,我们获得了一个轻巧的过程,可以从流式数据中学习具有不同的类分布的流媒体数据,与训练单个模型相比,没有增加可训练的参数,几乎没有内存或计算开销。使用Twitter数据对一组示例性任务进行的实验表明,Limes比替代方法具有更高的精度,尤其是在相关的现实世界中,最低的现实度量指标。

We introduce LIMES, a new method for learning with non-stationary streaming data, inspired by the recent success of meta-learning. The main idea is not to attempt to learn a single classifier that would have to work well across all occurring data distributions, nor many separate classifiers, but to exploit a hybrid strategy: we learn a single set of model parameters from which a specific classifier for any specific data distribution is derived via classifier adaptation. Assuming a multi-class classification setting with class-prior shift, the adaptation step can be performed analytically with only the classifier's bias terms being affected. Another contribution of our work is an extrapolation step that predicts suitable adaptation parameters for future time steps based on the previous data. In combination, we obtain a lightweight procedure for learning from streaming data with varying class distribution that adds no trainable parameters and almost no memory or computational overhead compared to training a single model. Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches, especially with respect to the relevant real-world metric of lowest within-day accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源