论文标题
非亚伯特征态热假设
Non-Abelian eigenstate thermalization hypothesis
论文作者
论文摘要
本征态热假说(ETH)解释了为什么如果汉密尔顿缺乏对称性,则混沌量子多体系统在内部进行热层。如果汉密尔顿人保守了一个数量(“电荷”),则在微型典型子空间中,ETH意味着电荷扇形内的热化。但是量子系统可能会有无法互相通勤的费用,因此不共享本本basis。微域子空间可能不存在。此外,哈密顿量将具有变性,因此ETH不需要暗示热化。我们通过提出非亚伯ETH并调用量子热力学中引入的近似微型典型子空间来使ETH适应非交通电荷。在使用SU(2)对称性的说明时,我们将非亚伯ETH应用于计算局部可观察到的时间平均和热期望值。在许多情况下,我们证明了时间平均水平。但是,我们还发现,在物理上合理的假设下,时间平均值会随着全球系统大小的函数的函数而异常地收敛到热平均值。这项工作将ETH(多体物理学的基石)扩展到了非公告电荷,最近是量子热力学活动中强烈活性的主题。
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one quantity ("charge"), the ETH implies thermalization within a charge sector -- in a microcanonical subspace. But quantum systems can have charges that fail to commute with each other and so share no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have degeneracies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-Abelian ETH in calculating local observables' time-averaged and thermal expectation values. In many cases, we prove, the time average thermalizes. However, we also find cases in which, under a physically reasonable assumption, the time average converges to the thermal average unusually slowly as a function of the global-system size. This work extends the ETH, a cornerstone of many-body physics, to noncommuting charges, recently a subject of intense activity in quantum thermodynamics.