论文标题
宇宙紫外线背景以及模拟场矮星系中恒星形成的起点和末端
The cosmic UV background and the beginning and end of star formation in simulated field dwarf galaxies
论文作者
论文摘要
我们使用使徒宇宙学模拟来检验宇宙紫外线背景在低质量LCDM晕晕中调节恒星形成(SF)的作用。与较早的工作一致,我们发现,在恢复后,SF主要以光晕进行,其质量超过了依赖红移的``临界''质量,该质量是由光环的结构和紫外线加热气体的热压设定的。 mcrit从z〜10时的〜10^8 msun增加到z = 0时的mcrit〜10^9.7 msun,大约遵循该质量范围内光晕的平均质量生长。这意味着目前远高于或以下关键的光环一直存在于早期。如今,发光矮人的光环已经在高红移处高于批判性和恒星形成,自然地解释了矮人中古老的恒星种群无处不在,而不论光度如何。接近临界边界的系统的SF历史更为复杂。 SF可能会在矮人中停止或重新点燃,其宿主光晕落在以下或爬上临界边界之上,这表明在某些矮人中对SF的情节性质有一个有吸引力的解释。而且,过去的一些亚临界光环过去可能超过了至关重要的。目前,这些系统应构成缺乏恒星形成的大量较弱的斑点矮人。尽管目前很少知道这样的星系,但该人群的发现将为我们的结果提供强有力的支持。我们的工作表明,而不是恒星的反馈,而是电离紫外线背景和质量积聚历史记录是什么调节最微弱的矮人中的SF。
We use the APOSTLE cosmological simulations to examine the role of the cosmic UV background in regulating star formation (SF) in low-mass LCDM halos. In agreement with earlier work, we find that after reionization SF proceeds mainly in halos whose mass exceeds a redshift-dependent ``critical'' mass, Mcrit, set by the structure of the halos and by the thermal pressure of UV-heated gas. Mcrit increases from ~10^8 Msun at z~10 to Mcrit ~10^9.7 Msun at z=0, roughly following the average mass growth of halos in that mass range. This implies that halos well above or below critical at present have remained so since early times. Halos of luminous dwarfs today were already above-critical and star-forming at high redshift, explaining naturally the ubiquitous presence of ancient stellar populations in dwarfs, regardless of luminosity. The SF history of systems close to the critical boundary is more complex. SF may cease or reignite in dwarfs whose host halo falls below or climbs above the critical boundary, suggesting an attractive explanation for the episodic nature of SF in some dwarfs. Also, some subcritical halos today may have been above critical in the past; these systems should at present make up a sizable population of faint field dwarfs lacking ongoing star formation. Although few such galaxies are currently known, the discovery of this population would provide strong support for our results. Our work indicates that, rather than stellar feedback, it is the ionizing UV background and mass accretion history what regulates SF in the faintest dwarfs.