论文标题
交叉顶:零射击跨索马面向任务的解析
Cross-TOP: Zero-Shot Cross-Schema Task-Oriented Parsing
论文作者
论文摘要
深度学习方法已使越来越复杂的话语以任务为导向的语义解析。但是,单个模型通常仍在分别为每个任务进行培训和部署,需要为每个任务进行标记的培训数据,这使得支持新任务的挑战,即使在单个业务垂直方面(例如,食品订购或旅行预订)也是如此。在本文中,我们描述了交叉顶部(交叉施加任务的解析),这是一种用于在给定垂直方向中复杂语义解析的零拍方法。通过利用用户从相同的垂直共享词汇和语义相似性请求的事实,对单个跨施加性解析器进行了培训,可以在垂直行业内使用任意数量的任意任务,看不见或看不见。我们表明,跨顶部可以在以前看不见的任务上实现高精度,而无需任何其他培训数据,从而提供了一种可扩展的方法来引导新任务的语义解析器。作为这项工作的一部分,我们发布了食品界数据集,这是一个面向任务的解析数据集,该数据集中是食品订购垂直的数据集,并带有五个架构的话语和注释,每个图案都来自其他餐厅菜单。
Deep learning methods have enabled task-oriented semantic parsing of increasingly complex utterances. However, a single model is still typically trained and deployed for each task separately, requiring labeled training data for each, which makes it challenging to support new tasks, even within a single business vertical (e.g., food-ordering or travel booking). In this paper we describe Cross-TOP (Cross-Schema Task-Oriented Parsing), a zero-shot method for complex semantic parsing in a given vertical. By leveraging the fact that user requests from the same vertical share lexical and semantic similarities, a single cross-schema parser is trained to service an arbitrary number of tasks, seen or unseen, within a vertical. We show that Cross-TOP can achieve high accuracy on a previously unseen task without requiring any additional training data, thereby providing a scalable way to bootstrap semantic parsers for new tasks. As part of this work we release the FoodOrdering dataset, a task-oriented parsing dataset in the food-ordering vertical, with utterances and annotations derived from five schemas, each from a different restaurant menu.