论文标题

哺乳动物:使用联邦学习的乳房X线乳房密度估计

MammoFL: Mammographic Breast Density Estimation using Federated Learning

论文作者

Muthukrishnan, Ramya, Heyler, Angelina, Katti, Keshava, Pati, Sarthak, Mankowski, Walter, Alahari, Aprupa, Sanborn, Michael, Conant, Emily F., Scott, Christopher, Winham, Stacey, Vachon, Celine, Chaudhari, Pratik, Kontos, Despina, Bakas, Spyridon

论文摘要

在这项研究中,我们使用神经网络自动化定量乳房X线乳腺密度估计,并表明该工具是多机构数据集的联合学习的强大用例。我们的数据集包括来自两个独立机构的双边CC-View和MLO-View乳房X线照片图像。在算法生成的标签上分别训练了两个U-NET,从这些图像中对乳房和致密的组织进行分割,然后计算乳腺百分比密度(PD)。对网络进行了联合学习的培训,并将其与三个非填充基线进行了比较,一个基线对每个机构数据集进行了培训,另一个对汇总的多机构数据集进行了培训。我们证明,对多机构数据集进行培训对于算法概括性至关重要。我们进一步表明,对多机构数据集的联邦学习改进了模型的概括,以与多机构数据集的集中培训相同的水平,表明可以将联邦学习应用于我们的方法,以改善算法的杂物性概括性,同时维持患者隐私。

In this study, we automate quantitative mammographic breast density estimation with neural networks and show that this tool is a strong use case for federated learning on multi-institutional datasets. Our dataset included bilateral CC-view and MLO-view mammographic images from two separate institutions. Two U-Nets were separately trained on algorithm-generated labels to perform segmentation of the breast and dense tissue from these images and subsequently calculate breast percent density (PD). The networks were trained with federated learning and compared to three non-federated baselines, one trained on each single-institution dataset and one trained on the aggregated multi-institution dataset. We demonstrate that training on multi-institution datasets is critical to algorithm generalizability. We further show that federated learning on multi-institutional datasets improves model generalization to unseen data at nearly the same level as centralized training on multi-institutional datasets, indicating that federated learning can be applied to our method to improve algorithm generalizability while maintaining patient privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源