论文标题
无监督的深度学习方法
An Unsupervised Deep-Learning Method for Bone Age Assessment
论文作者
论文摘要
反映骨骼发育程度的骨骼年龄可用于预测成人身高并检测儿童的内分泌疾病。放射科医生的检查和操作员的可变性都对骨龄年龄评估都有重大影响。为了减少人类干预,使用机器学习算法来自动评估骨骼年龄。但是,常规的监督深度学习方法需要预先标记的数据。在本文中,基于具有约束(CCAE)的卷积自动编码器,这是一种在指纹分类中提出的无监督的深度学习模型,我们为骨骼年龄分类并为其施洗BA-CCAE提出了该模型。在提出的BA-CCAE模型中,骨时代的原始X射线图像的关键区域是编码的,产生了潜在的向量。 K-均值聚类算法用于通过对骨图像的潜在向量进行分组来获得最终分类。关于北美小儿骨龄器数据集(RSNA)的一系列实验表明,以48个月的间隔分类的准确性为76.15%。尽管现在的准确性低于大多数现有的监督模型,但提出的BA-CCAE模型可以在没有任何预先标记的数据的情况下建立骨骼年龄的分类,据我们所知,拟议的BA-CCAE是使用无探测的深度学习方法的少数步道之一。
The bone age, reflecting the degree of development of the bones, can be used to predict the adult height and detect endocrine diseases of children. Both examinations of radiologists and variability of operators have a significant impact on bone age assessment. To decrease human intervention , machine learning algorithms are used to assess the bone age automatically. However, conventional supervised deep-learning methods need pre-labeled data. In this paper, based on the convolutional auto-encoder with constraints (CCAE), an unsupervised deep-learning model proposed in the classification of the fingerprint, we propose this model for the classification of the bone age and baptize it BA-CCAE. In the proposed BA-CCAE model, the key regions of the raw X-ray images of the bone age are encoded, yielding the latent vectors. The K-means clustering algorithm is used to obtain the final classifications by grouping the latent vectors of the bone images. A set of experiments on the Radiological Society of North America pediatric bone age dataset (RSNA) show that the accuracy of classifications at 48-month intervals is 76.15%. Although the accuracy now is lower than most of the existing supervised models, the proposed BA-CCAE model can establish the classification of bone age without any pre-labeled data, and to the best of our knowledge, the proposed BA-CCAE is one of the few trails using the unsupervised deep-learning method for the bone age assessment.