论文标题
STD-NET:通过层次张量分解搜索图像切解深度学习架构
STD-NET: Search of Image Steganalytic Deep-learning Architecture via Hierarchical Tensor Decomposition
论文作者
论文摘要
最近的研究表明,大多数现有的深层切解模型都有大量的冗余,从而大量浪费了存储和计算资源。现有的模型压缩方法无法灵活地压缩剩余快捷框架中的卷积层,因此无法获得令人满意的收缩率。在本文中,我们提出了STD-NET,这是一种无监督的深入学习架构搜索方法,该方法是通过分层张量分解图像切解分解的。我们提出的策略不会受到各种残差连接的限制,因为此策略不会改变卷积块的输入和输出渠道的数量。我们提出了一个归一化的失真阈值,以评估基本模型的每个相关卷积层的敏感性,以指导性STD-NET以有效且无监督的方法来压缩目标网络,并获得具有低计算成本和相似性能的不同形状网络结构的两个网络结构。广泛的实验证实,一方面,由于获得的网络体系结构的良好适应性,我们的模型可以在各种地分析场景中实现可比较甚至更好的检测性能。另一方面,实验结果还表明,与先前的切实可行的网络压缩方法相比,我们提出的策略更有效,可以消除更多的冗余。
Recent studies shows that the majority of existing deep steganalysis models have a large amount of redundancy, which leads to a huge waste of storage and computing resources. The existing model compression method cannot flexibly compress the convolutional layer in residual shortcut block so that a satisfactory shrinking rate cannot be obtained. In this paper, we propose STD-NET, an unsupervised deep-learning architecture search approach via hierarchical tensor decomposition for image steganalysis. Our proposed strategy will not be restricted by various residual connections, since this strategy does not change the number of input and output channels of the convolution block. We propose a normalized distortion threshold to evaluate the sensitivity of each involved convolutional layer of the base model to guide STD-NET to compress target network in an efficient and unsupervised approach, and obtain two network structures of different shapes with low computation cost and similar performance compared with the original one. Extensive experiments have confirmed that, on one hand, our model can achieve comparable or even better detection performance in various steganalytic scenarios due to the great adaptivity of the obtained network architecture. On the other hand, the experimental results also demonstrate that our proposed strategy is more efficient and can remove more redundancy compared with previous steganalytic network compression methods.