论文标题
Thermal Sunyaev-Zel'Dovich效应与投影星系密度场之间的跨相关性
Cross Correlation between the Thermal Sunyaev-Zel'dovich Effect and Projected Galaxy Density Field
论文作者
论文摘要
我们使用广泛的现场红外调查Explorer(Wise)All-Sky调查进行了对Planck Compton $ Y $参数图和预计的Galaxy密度场的功率光谱的联合分析。我们检测到Wise和Planck数据(G $ Y $)之间的统计相关性,其意义为$ 21.8 \,σ$。我们还测量了TSZ($ yy $)和Galaxy密度场图(GG)的自动相关光谱,其显着性分别为$ 150 \,σ$和$ 88 \,σ$。然后,我们构建一个Halo模型并使用测量的相关性$ c^{\ rm gg} _ {\ ell} $,$ c^{yy} _ {\ ell} $和$ c^{{\ rm g} y} y} y} _} _ {\ ell} _ {\ ell} $ m_ {500}/m^{\ rm tsz} _ {500} $。我们还适合星系偏置,其中包含在$ b _ {\ rm g}(z,\ ell)= b _ {\ rm g}^0(1+z)^α(\ ell_ ell_0)^β$,$ \ ell_0 = 117 = 117 $ = 117 $。我们获得的约束为$ b = 1.50 {\ pm 0.07} \,(\ textrm {stat})\ pm {0.34} \,(\ textrm {sys})$,即$ 1-b _ {\ rm h} 0.16 \,({\ rm sys})$(68 \%置信度)的静液压质量偏置和$ b _ {\ rm g}^0 = 1.28^{+0.03} _ { - 0.04} $α= 0.20^{+0.11} _ { - 0.07} \,(\ textrm {stat})\ pm {0.10} \,(\ textrm {sys})$和$β= 0.45 \ pm {0.02} \,(\ textrm {sys})$用于银河偏置。来自未来CMB和Galaxy Surveys(例如Rubin天文台)的传入数据集将允许更详细地探测大规模的气体分布。
We present a joint analysis of the power spectra of the Planck Compton $y$-parameter map and the projected galaxy density field using the Wide Field Infrared Survey Explorer (WISE) all-sky survey. We detect the statistical correlation between WISE and Planck data (g$y$) with a significance of $21.8\,σ$. We also measure the auto-correlation spectrum for the tSZ ($yy$) and the galaxy density field maps (gg) with a significance of $150\,σ$ and $88\,σ$, respectively. We then construct a halo model and use the measured correlations $C^{\rm gg}_{\ell}$, $C^{yy}_{\ell}$ and $C^{{\rm g}y}_{\ell}$ to constrain the tSZ mass bias $B\equiv M_{500}/M^{\rm tSZ}_{500}$. We also fit for the galaxy bias, which is included with explicit redshift and multipole dependencies as $b_{\rm g}(z,\ell)=b_{\rm g}^0(1+z)^α(\ell/\ell_0)^β$, with $\ell_0=117$. We obtain the constraints to be $B =1.50{\pm 0.07}\,(\textrm{stat}) \pm{0.34}\,(\textrm{sys})$, i.e. $1-b_{\rm H}=0.67\pm 0.03\,({\rm stat})\pm 0.16\,({\rm sys})$ (68\% confidence level) for the hydrostatic mass bias, and $b_{\rm g}^0=1.28^{+0.03}_{-0.04}\,(\textrm{stat}) \pm{0.11}\,(\textrm{sys})$, with $α=0.20^{+0.11}_{-0.07}\,(\textrm{stat}) \pm{0.10}\,(\textrm{sys})$ and $β=0.45{\pm 0.01}\,(\textrm{stat}) \pm{0.02}\,(\textrm{sys})$ for the galaxy bias. Incoming data sets from future CMB and galaxy surveys (e.g. Rubin Observatory) will allow probing the large-scale gas distribution in more detail.