论文标题
几乎是交换的歧管及其模块化类
Almost Commutative Manifolds and Their Modular Classes
论文作者
论文摘要
几乎交换的代数或$ρ$交互的代数是一个代数,由Abelian群体分级,其交换性由称为换向因素的功能控制。我们与将超人的表达式作为环形空间的表述相同,我们介绍了$ρ$ - 交换版的概念,即歧管,Q manifolds,berezin卷形式和模块化类的概念。它们是超级几何的概括。我们提供了示例,包括$ρ$ - 交通式版本的Schouten支架和非共同曲线。
An almost commutative algebra, or a $ρ$-commutative algebra, is an algebra which is graded by an abelian group and whose commutativity is controlled by a function called a commutation factor. The same way as a formulation of a supermanifold as a ringed space, we introduce concepts of the $ρ$-commutative versions of manifolds, Q-manifolds, Berezin volume forms, and the modular classes. They are generalizations of the ones in supergeometry. We give examples including a $ρ$-commutative version of the Schouten bracket and a noncommutative torus.