论文标题

合成:通过计算机实验扩展基于学习的X射线图像分析

SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In Silico Experiments

论文作者

Gao, Cong, Killeen, Benjamin D., Hu, Yicheng, Grupp, Robert B., Taylor, Russell H., Armand, Mehran, Unberath, Mathias

论文摘要

现在,人工智能(AI)可以自动解释医学图像以供临床使用。但是,AI的潜在用于介入图像(相对于参与分类或诊断的图像),例如在手术期间的指导,仍然在很大程度上尚未开发。这是因为目前,使用现行手术后的数据分析进行了外科AI系统,该系统具有实时手术中收集的数据,该数据具有基本和实际的局限性,包括道德考虑,费用,可扩展性,数据完整性以及缺乏地面真相。在这里,我们证明从人类模型中创建现实的模拟图像是可行的替代方案,并与大规模的原位数据收集进行了补充。我们表明,对现实合成数据的训练AI图像分析模型,结合当代域的概括或适应技术,导致在实际数据上的模型与在精确匹配的真实数据训练集中训练的模型相当地执行的模型。由于从基于人类的模型尺度的合成生成训练数据,因此我们发现,用于X射线图像分析的模型传输范式(我们称为Syntheex)甚至可以胜过实际数据训练的模型,因为在较大的数据集中训练的有效性。我们证明了合成在三个临床任务上的潜力:髋关节图像分析,手术机器人工具检测和COVID-19肺病变分割。 Synthex提供了一个机会,可以极大地加速基于X射线药物的智能系统的概念,设计和评估。此外,模拟的图像环境还提供了测试新颖仪器,设计互补手术方法的机会,并设想了改善结果,节省时间或减轻人为错误的新技术,从实时人类数据收集的道德和实际考虑方面释放了人类错误。

Artificial intelligence (AI) now enables automated interpretation of medical images for clinical use. However, AI's potential use for interventional images (versus those involved in triage or diagnosis), such as for guidance during surgery, remains largely untapped. This is because surgical AI systems are currently trained using post hoc analysis of data collected during live surgeries, which has fundamental and practical limitations, including ethical considerations, expense, scalability, data integrity, and a lack of ground truth. Here, we demonstrate that creating realistic simulated images from human models is a viable alternative and complement to large-scale in situ data collection. We show that training AI image analysis models on realistically synthesized data, combined with contemporary domain generalization or adaptation techniques, results in models that on real data perform comparably to models trained on a precisely matched real data training set. Because synthetic generation of training data from human-based models scales easily, we find that our model transfer paradigm for X-ray image analysis, which we refer to as SyntheX, can even outperform real data-trained models due to the effectiveness of training on a larger dataset. We demonstrate the potential of SyntheX on three clinical tasks: Hip image analysis, surgical robotic tool detection, and COVID-19 lung lesion segmentation. SyntheX provides an opportunity to drastically accelerate the conception, design, and evaluation of intelligent systems for X-ray-based medicine. In addition, simulated image environments provide the opportunity to test novel instrumentation, design complementary surgical approaches, and envision novel techniques that improve outcomes, save time, or mitigate human error, freed from the ethical and practical considerations of live human data collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源