论文标题
纯图编织组的拓扑复杂性稳定最大
The topological complexity of pure graph braid groups is stably maximal
论文作者
论文摘要
我们证明了Farber对图形配置空间的稳定拓扑复杂性的猜想。该猜想是源于从最近对非球形空间拓扑复杂性的见解得出的一般下限。我们的论点同样适用于更高的拓扑复杂性。
We prove Farber's conjecture on the stable topological complexity of configuration spaces of graphs. The conjecture follows from a general lower bound derived from recent insights into the topological complexity of aspherical spaces. Our arguments apply equally to higher topological complexity.